Spaces:
Sleeping
Sleeping
File size: 3,123 Bytes
c737cc1 4f4929c 98ac2f8 7f4f3b5 98ac2f8 aef779b 2bf2ced aef779b 2bf2ced aef779b d51e55d aef779b a580207 7d20bf7 d51e55d aef779b 94699d8 aef779b 934df69 f5e0ea2 b39018a f5e0ea2 934df69 f5e0ea2 b39018a f5e0ea2 aef779b ae4e0d0 9fe86ad f2bcf60 c737cc1 aef779b f5e0ea2 7f4f3b5 e4335ae aef779b 7d20bf7 f7228e9 48e043b 7f4f3b5 f7228e9 f33590a adc0c9b 3dce861 66d7857 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import streamlit as st
import torch
from transformers import AutoTokenizer, GenerationConfig
from transformers import AutoModelForCausalLM
from transformers import TextIteratorStreamer
from threading import Thread
import numpy as np
temperature = 1.0
repetition_penalty = 1.0
perform_fewshot = False
few_shot_examples = 6
use_gpu = True
batch_size = 1
def generate_and_tokenize_instruction(sample,return_tensors=None):
prompt = f"""Abaixo encontrase unha instruci贸n que describe unha tarefa, xunto cunha entrada que proporciona m谩is contexto.
Escribe unha resposta que responda adecuadamente a entrada.
### Instruci贸n:
{sample['instruction']}
### Entrada:
{sample['input']}
### Resposta:
{sample['output']}\n"""
instruction = tokenizer(prompt,return_tensors=return_tensors)
return instruction
def generate(model,tokenizer,instruction,context,streamer):
prompt = generate_and_tokenize_instruction({'instruction':instruction,'input':context,'output':''},return_tensors="pt")
input_ids = prompt["input_ids"]#.to('cuda:0')
generation_output = model.generate(
input_ids=input_ids,
generation_config=GenerationConfig(do_sample=True),
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_length,
temperature=temperature,
top_k=10,
repetition_penalty=repetition_penalty,
eos_token_id=tokenizer.eos_token_id,
streamer=streamer
)
outputs = []
for o in generation_output.sequences:
output = tokenizer.decode(o)
output = output.replace("Abaixo encontrase unha instruci脙鲁n que describe unha tarefa, xunto cunha entrada que proporciona m脙隆is contexto. \nEscribe unha resposta que responda adecuadamente a entrada.\n",'')
output = output.split("###")[3].split("<|endoftext|>", 1)[0]
return output
@st.cache_resource
def get_model():
# Create a model of the specified type.
return AutoModelForCausalLM.from_pretrained("lagy/carballo-1.3b-finetuned")
@st.cache_resource
def get_tokenizer():
# Create a model of the specified type.
return AutoTokenizer.from_pretrained("lagy/carballo-1.3b-finetuned")
st.write(" ")
instruction = st.text_area('Instrucci贸n')
context = st.text_area('Contexto')
max_length = st.number_input('Max generation length',value=120)
model = get_model()
tokenizer = get_tokenizer()
model.eval()
if 'reply' not in st.session_state:
st.session_state['reply'] = ''
if st.button('Generate'):
streamer = TextIteratorStreamer(tokenizer)
thread = Thread(target=generate,args=(model,tokenizer,instruction,context,streamer))
thread.start()
st.write("Generating....")
next(streamer)
def iterator():
for new_text in streamer:
new_text = new_text.split("<|endoftext|>", 1)[0]
yield new_text
st.write_stream(iterator)
#for new_text in streamer:
#i += 1
#if (i != 1):
#new_text = new_text.split("<|endoftext|>", 1)[0]
#text += new_text
|