import gradio as gr import os from langchain_huggingface import HuggingFaceEmbeddings from langchain_core.runnables import RunnableParallel from langchain_core.runnables import RunnablePassthrough from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_chroma import Chroma from langchain_community.llms import GPT4All from huggingface_hub import hf_hub_download """ model_path = "models" model_name = "bling-phi-3.gguf" hf_hub_download(repo_id="llmware/bling-phi-3-gguf", filename=model_name, local_dir=model_path) """ llm = GPT4All(model="./models/bling-phi-3.gguf") # Initialize embedding model "all-MiniLM-L6-v2" embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # Load the existing ChromaDB database vector_store = Chroma(persist_directory="./chroma_db", embedding_function=embedding_model) # Prompt template = """: {context} \n {question} \n:""" prompt = PromptTemplate.from_template(template) # Define a new chain to return both the answer and the sources qa_chain_with_sources = ( RunnableParallel( { "context": vector_store.as_retriever(), "question": RunnablePassthrough(), } ) | { "answer": prompt | llm | StrOutputParser(), "sources": lambda x: [doc.metadata.get("source", "Unknown") for doc in x["context"]], } ) # Function to call a RAG LLM query def rag_query(query, history): # Invoke the chain response = qa_chain_with_sources.invoke(query) answer = response["answer"] unique_sources = list(set(response["sources"])) # Print answers + sources output = f"Answer: {answer}\n\nSources:\n" + "\n".join(unique_sources) return output """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( fn=rag_query, # Function to call for generating responses title="WEHI Student Intern Chatbot Demo", type='messages', description="Ask questions related to your WEHI internship and get answers with sources.", examples=[ "What flexibility is there for the internship?", "What are the key things to do before the weekly meetings?", "How do I tackle complex and ambiguous projects?", "What happens over Easter break at WEHI?", "What are the tasks for the REDMANE Data Ingestion team?", "When is the final presentation due?", "What is Nectar?", "Is the internship remote or in person?" ], ) demo.launch()