Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from tqdm import tqdm | |
from monai.utils import set_determinism | |
from torch.cuda.amp import autocast | |
# from generative.inferers import DiffusionInferer | |
from generative.networks.nets import DiffusionModelUNet,AutoencoderKL | |
from generative.networks.schedulers import DDPMScheduler | |
from generative.networks.schedulers.ddim import DDIMScheduler | |
import cv2 | |
from lib_image_processing.contrast_brightness_lib import controller | |
from lib_image_processing.removebg_lib import get_mask | |
import matplotlib.pyplot as plt | |
import numpy as np | |
set_determinism(42) | |
torch.cuda.empty_cache() | |
## Load autoencoder | |
#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
device = torch.device('cpu') | |
autoencoderkl = AutoencoderKL( | |
spatial_dims=2, | |
in_channels=1, | |
out_channels=1, | |
num_channels=(128, 128, 256), | |
latent_channels=3, | |
num_res_blocks=2, | |
attention_levels=(False, False, False), | |
with_encoder_nonlocal_attn=False, | |
with_decoder_nonlocal_attn=False, | |
) | |
root_dir = "models" | |
PATH_auto = f'{root_dir}/auto_encoder_model.pt' | |
autoencoderkl.load_state_dict(torch.load(PATH_auto,map_location=device)) | |
autoencoderkl = autoencoderkl.to(device) | |
#### Load unet and embedings | |
embedding_dimension = 64 | |
unet = DiffusionModelUNet( | |
spatial_dims=2, | |
in_channels=3, | |
out_channels=3, | |
num_res_blocks=2, | |
num_channels=(128, 256, 512), | |
attention_levels=(False, True, True), | |
num_head_channels=(0, 256, 512), | |
with_conditioning=True, | |
cross_attention_dim=embedding_dimension | |
) | |
embed = torch.nn.Embedding(num_embeddings=6, embedding_dim=embedding_dimension, padding_idx=0) | |
#### Load the Model here ########################################################## | |
# PATH_check_point = 'checkpoints/275.pth' | |
# checkpoint = torch.load(PATH_check_point) | |
PATH_unet_condition = f'{root_dir}/unet_latent_space_model_condition.pt' | |
PATH_embed_condition = f'{root_dir}/embed_latent_space_model_condition.pt' | |
unet.load_state_dict(torch.load(PATH_unet_condition,map_location=device)) | |
embed.load_state_dict(torch.load(PATH_embed_condition,map_location=device)) | |
# unet.load_state_dict(checkpoint['model_state_dict']) | |
# embed.load_state_dict(checkpoint['embed_state_dict']) | |
#################################################################### | |
unet.to(device) | |
embed.to(device) | |
###---------------> Global variables for anomaly detection <------------------## | |
input_unhealthy = '' | |
output_healthy = '' | |
### ------------------------> Anomaly detection <-----------------------########### | |
scheduler_ddims = DDIMScheduler(num_train_timesteps=1000,schedule="linear_beta", beta_start=0.0015, beta_end=0.0195) | |
def get_healthy(un_img): # un_img is in range 0-255 but model takes in range 0-1. conversion is needed. | |
global input_unhealthy | |
global output_healthy | |
img = cv2.resize(un_img,(112,112)) # resizing here | |
gray_image = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) | |
input_unhealthy = gray_image.copy() | |
gray_image.resize(112,112,1) | |
img_tensor = torch.from_numpy(gray_image*1.0) | |
img_tensor = img_tensor.permute(2,0,1) | |
img_tensor /= 255. | |
img_tensor = img_tensor.float() | |
input = img_tensor.reshape((1,1,112,112)) | |
z_mu, z_sigma = autoencoderkl.encode(input.to(device)) | |
z = autoencoderkl.sampling(z_mu, z_sigma) | |
unet.eval() | |
guidance_scale = 3.0 | |
total_timesteps = 1000 | |
latent_space_depth = int(total_timesteps * 0.5) | |
current_img = z | |
current_img = current_img.float() | |
scheduler_ddims.set_timesteps(num_inference_steps=total_timesteps) | |
## Ecodings | |
scheduler_ddims.clip_sample = False | |
class_embedding = embed(torch.zeros(1).long().to(device)).unsqueeze(1) | |
progress_bar = tqdm(range(30)) | |
for i in progress_bar: # go through the noising process | |
t = i | |
with torch.no_grad(): | |
model_output = unet(current_img, timesteps=torch.Tensor((t,)).to(current_img.device), context=class_embedding) | |
current_img, _ = scheduler_ddims.reversed_step(model_output, t, current_img) | |
progress_bar.set_postfix({"timestep input": t}) | |
latent_img = current_img | |
## Decoding | |
conditioning = torch.cat([torch.zeros(1).long(), torch.ones(1).long()], dim=0).to(device) | |
class_embedding = embed(conditioning).unsqueeze(1) | |
progress_bar = tqdm(range(500)) | |
for i in progress_bar: # go through the denoising process | |
t = latent_space_depth - i | |
current_img_double = torch.cat([current_img] * 2) | |
with torch.no_grad(): | |
model_output = unet( | |
current_img_double, timesteps=torch.Tensor([t, t]).to(current_img.device), context=class_embedding | |
) | |
noise_pred_uncond, noise_pred_text = model_output.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
current_img, _ = scheduler_ddims.step(noise_pred, t, current_img) | |
progress_bar.set_postfix({"timestep input": t}) | |
# torch.cuda.empty_cache() | |
current_img_decode = autoencoderkl.decode(current_img) | |
out_image = current_img_decode[0][0].to('cpu').detach().numpy() | |
out_image = 255*out_image | |
out_image = (out_image).astype('uint8') | |
output_healthy = out_image.copy() | |
return cv2.resize(out_image,(448,448)) | |
##------------------> Anomaly detection , contrast and background removal <-------------------## | |
def update(brightness,contrast): ##def update(brightness,contrast,thr1,thr2): | |
unhealthy_c = controller(input_unhealthy,brightness,contrast) | |
healthy_c = controller(output_healthy,brightness,contrast) | |
# unhealthy_remove_bg = get_mask(unhealthy_c,thr1,thr2) | |
# healthy_remove_bg = get_mask(healthy_c,thr1,thr2) | |
# diff_img = unhealthy_remove_bg - healthy_remove_bg | |
diff_img = unhealthy_c - healthy_c | |
cmap = plt.get_cmap('inferno') | |
diff_img_a = cmap(diff_img) | |
diff_img = np.delete(diff_img_a, 3, 2) | |
return cv2.resize(healthy_c,(448,448)),cv2.resize(diff_img,(448,448)) | |
### --------------> Image generation <----------------------------############## | |
scheduler = DDPMScheduler(num_train_timesteps=1000, schedule="linear_beta", beta_start=0.0015, beta_end=0.0195) | |
# scale_factor = 0.943597137928009 | |
# inferer = LatentDiffusionInferer(scheduler, scale_factor=scale_factor) | |
def get_value(grad): | |
info_dict = {"Normal":1, "Level_1":2, "Level_2":3,"Level_3":4,"Worse":5} | |
return info_dict[grad] | |
def generate_condition_bone_images(grad=0): | |
grad_value = get_value(grad) | |
unet.eval() | |
scheduler.clip_sample = True | |
guidance_scale = 3 | |
conditioning = torch.cat([torch.zeros(1).long(), grad_value * torch.ones(1).long()], dim=0).to( | |
device | |
) # 2*torch.ones(1).long() is the class label for the UNHEALTHY (tumor) class | |
class_embedding = embed(conditioning).unsqueeze( | |
1 | |
) # cross attention expects shape [batch size, sequence length, channels] | |
scheduler.set_timesteps(num_inference_steps=1000) | |
noise = torch.randn((1, 3, 28, 28)) | |
noise = noise.to(device) | |
progress_bar = tqdm(scheduler.timesteps) | |
for t in progress_bar: | |
with autocast(enabled=True): | |
with torch.no_grad(): | |
noise_input = torch.cat([noise] * 2) | |
model_output = unet(noise_input, timesteps=torch.Tensor((t,)).to(noise.device), context=class_embedding,) | |
noise_pred_uncond, noise_pred_text = model_output.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
noise, _ = scheduler.step(noise_pred, t, noise) | |
with torch.no_grad(): | |
noise = autoencoderkl.decode(noise) | |
img = (noise[0][0].to('cpu')).numpy() | |
return cv2.resize(img,(448,448)) | |
##--------------------------------> UI <-----------------------------## | |
my_theme = 'YenLai/Superhuman' | |
with gr.Blocks(theme=my_theme,title="Knee Predict") as demo: | |
gr.Markdown(""" # Knee Predict | |
## Generative AI for Anomaly Detection and Analysis for Bone Diseases - Knee Osteoarthritis """ ) | |
with gr.Tab("Generate Image on conditions"): | |
gr.Markdown("#### Generate Knee X-ray images with condition. You can select the level of Osteoarthritis and click on generate . Then the AI will generate Knee X-ray image of the given condition.") | |
with gr.Row(): | |
output =gr.Image(height=450,width=450) | |
gr.Image(value="images/doc_bone.png",label="AI-Assisted Healthcare") | |
# output= gr.Textbox(label="Output Box") | |
gr.Markdown(" ### Select the level of disease severity you want to generate !!") | |
input = gr.Radio(["Normal", "Level_1", "Level_2","Level_3","Worse"], label="Knee Osteoarthritis Disease Severity Levels",scale=1) | |
with gr.Row(): | |
greet_btn = gr.Button("Generate",size="lg",scale=1,interactive=True) | |
gr.Markdown() | |
gr.Markdown() | |
with gr.Tab("Anomaly Detection"): | |
gr.Markdown("### From a given unhealthy x-ray image generate a healthy image keeping the size and other important features") | |
with gr.Row(): | |
image_input = gr.Image(height=450,width=450,label="Upload your knee x-ray here") | |
img_out_heal = gr.Image(height=450,width=450,label="Healthy image") | |
with gr.Row(): | |
gr.Markdown() | |
generate_healthy_button = gr.Button("Generate",size="lg") | |
gr.Markdown() | |
gr.Markdown("""### Generate Anomaly by comparing the healthy and unhealthy Knee x-rays | |
#### Click the update button to update the anomaly after changing the contrast and brightness. | |
""") | |
with gr.Row(): | |
# image_input = gr.Image() | |
image_output = [gr.Image(height=450,width=450,label="Contrasted"),gr.Image(height=450,width=450,label="Anomaly map")] # contrast and anomaly | |
with gr.Row(): | |
gr.Markdown() | |
update_anomaly_button = gr.Button("Update",size="lg") | |
gr.Markdown() | |
inputs_vlaues = [gr.Slider(0, 510, value=284, label="Brightness", info="Choose between 0 and 510"), | |
gr.Slider(0, 254, value=234, label="Contrast", info="Choose between 0 and 254"), | |
# gr.Slider(0, 50, value=7, label="Canny Threshold 1", info="Choose between 0 and 50"), | |
# gr.Slider(0, 50, value=20, label="Canny Threshold 2", info="Choose between 0 and 50"), | |
] | |
# inputs_vlaues.append(image_input) | |
gr.Examples(examples='examples' , fn=get_healthy, cache_examples=True, inputs=image_input, outputs=img_out_heal) | |
greet_btn.click(fn=generate_condition_bone_images, inputs=input,outputs=output, api_name="generate_bone") | |
generate_healthy_button.click(get_healthy,inputs=image_input,outputs=img_out_heal) | |
update_anomaly_button.click(update, inputs=inputs_vlaues, outputs=image_output) | |
if __name__ == "__main__": | |
demo.launch(share=True,server_name='0.0.0.0') | |