Laishram Pongthangamba Meitei
Upload 3 files
7ef25c7 verified
import cv2
import numpy as np
# import matplotlib.pyplot as plt
#== Parameters =======================================================================
BLUR = 21
CANNY_THRESH_1 = 10
CANNY_THRESH_2 = 200
MASK_DILATE_ITER = 10
MASK_ERODE_ITER = 10
def get_mask(contrasted=None,canny_thr1 = 7,canny_thr2=20):
blurred = cv2.GaussianBlur(contrasted, (3, 3), 0)
edges = cv2.Canny(blurred, 7, 20)
edges = cv2.dilate(edges, None)
edges = cv2.erode(edges, None)
#-- Find contours in edges, sort by area ---------------------------------------------
contour_info = []
# _, contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# Previously, for a previous version of cv2, this line was:
contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# Thanks to notes from commenters, I've updated the code but left this note
for c in contours:
contour_info.append((
c,
cv2.isContourConvex(c),
cv2.contourArea(c),
))
contour_info = sorted(contour_info, key=lambda c: c[2], reverse=True)
max_contour = contour_info[0]
mask = np.zeros(edges.shape)
cv2.fillConvexPoly(mask, max_contour[0], (255))
#-- Smooth mask, then blur it --------------------------------------------------------
mask = cv2.dilate(mask, None, iterations=MASK_DILATE_ITER)
mask = cv2.erode(mask, None, iterations=MASK_ERODE_ITER)
mask = cv2.GaussianBlur(mask, (BLUR, BLUR), 0)
# mask_stack = np.dstack([mask]*3) # Create 3-channel alpha mask
#-- Blend masked img into MASK_COLOR background --------------------------------------
# mask_stack = mask_stack.astype('float32') / 255.0 # Use float matrices,
# img = img.astype('float32') / 255.0 # for easy blending
mask_stack = mask/255.0
# gray = gray/255.0
masked = (mask_stack * contrasted) + ((1-mask_stack)) # Blend
masked = (masked).astype('uint8')
# masked = masked/255
return masked