Spaces:
Runtime error
Runtime error
Laishram Pongthangamba Meitei
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,268 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from tqdm import tqdm
|
4 |
+
from monai.utils import set_determinism
|
5 |
+
from torch.cuda.amp import autocast
|
6 |
+
# from generative.inferers import DiffusionInferer
|
7 |
+
from generative.networks.nets import DiffusionModelUNet,AutoencoderKL
|
8 |
+
from generative.networks.schedulers import DDPMScheduler
|
9 |
+
from generative.networks.schedulers.ddim import DDIMScheduler
|
10 |
+
import cv2
|
11 |
+
from lib_image_processing.contrast_brightness_lib import controller
|
12 |
+
from lib_image_processing.removebg_lib import get_mask
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import numpy as np
|
15 |
+
set_determinism(42)
|
16 |
+
torch.cuda.empty_cache()
|
17 |
+
|
18 |
+
## Load autoencoder
|
19 |
+
|
20 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
21 |
+
|
22 |
+
autoencoderkl = AutoencoderKL(
|
23 |
+
spatial_dims=2,
|
24 |
+
in_channels=1,
|
25 |
+
out_channels=1,
|
26 |
+
num_channels=(128, 128, 256),
|
27 |
+
latent_channels=3,
|
28 |
+
num_res_blocks=2,
|
29 |
+
attention_levels=(False, False, False),
|
30 |
+
with_encoder_nonlocal_attn=False,
|
31 |
+
with_decoder_nonlocal_attn=False,
|
32 |
+
)
|
33 |
+
root_dir = "models"
|
34 |
+
PATH_auto = f'{root_dir}/auto_encoder_model.pt'
|
35 |
+
|
36 |
+
autoencoderkl.load_state_dict(torch.load(PATH_auto))
|
37 |
+
autoencoderkl = autoencoderkl.to(device)
|
38 |
+
|
39 |
+
#### Load unet and embedings
|
40 |
+
|
41 |
+
embedding_dimension = 64
|
42 |
+
unet = DiffusionModelUNet(
|
43 |
+
spatial_dims=2,
|
44 |
+
in_channels=3,
|
45 |
+
out_channels=3,
|
46 |
+
num_res_blocks=2,
|
47 |
+
num_channels=(128, 256, 512),
|
48 |
+
attention_levels=(False, True, True),
|
49 |
+
num_head_channels=(0, 256, 512),
|
50 |
+
with_conditioning=True,
|
51 |
+
cross_attention_dim=embedding_dimension
|
52 |
+
)
|
53 |
+
|
54 |
+
embed = torch.nn.Embedding(num_embeddings=6, embedding_dim=embedding_dimension, padding_idx=0)
|
55 |
+
|
56 |
+
#### Load the Model here ##########################################################
|
57 |
+
# PATH_check_point = 'checkpoints/275.pth'
|
58 |
+
# checkpoint = torch.load(PATH_check_point)
|
59 |
+
|
60 |
+
PATH_unet_condition = f'{root_dir}/unet_latent_space_model_condition.pt'
|
61 |
+
PATH_embed_condition = f'{root_dir}/embed_latent_space_model_condition.pt'
|
62 |
+
|
63 |
+
unet.load_state_dict(torch.load(PATH_unet_condition))
|
64 |
+
embed.load_state_dict(torch.load(PATH_embed_condition))
|
65 |
+
|
66 |
+
# unet.load_state_dict(checkpoint['model_state_dict'])
|
67 |
+
# embed.load_state_dict(checkpoint['embed_state_dict'])
|
68 |
+
####################################################################
|
69 |
+
|
70 |
+
unet.to(device)
|
71 |
+
embed.to(device)
|
72 |
+
|
73 |
+
|
74 |
+
###---------------> Global variables for anomaly detection <------------------##
|
75 |
+
|
76 |
+
input_unhealthy = ''
|
77 |
+
output_healthy = ''
|
78 |
+
|
79 |
+
### ------------------------> Anomaly detection <-----------------------###########
|
80 |
+
|
81 |
+
scheduler_ddims = DDIMScheduler(num_train_timesteps=1000,schedule="linear_beta", beta_start=0.0015, beta_end=0.0195)
|
82 |
+
|
83 |
+
def get_healthy(un_img): # un_img is in range 0-255 but model takes in range 0-1. conversion is needed.
|
84 |
+
global input_unhealthy
|
85 |
+
global output_healthy
|
86 |
+
|
87 |
+
img = cv2.resize(un_img,(112,112)) # resizing here
|
88 |
+
gray_image = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
89 |
+
input_unhealthy = gray_image.copy()
|
90 |
+
gray_image.resize(112,112,1)
|
91 |
+
img_tensor = torch.from_numpy(gray_image*1.0)
|
92 |
+
img_tensor = img_tensor.permute(2,0,1)
|
93 |
+
img_tensor /= 255.
|
94 |
+
img_tensor = img_tensor.float()
|
95 |
+
input = img_tensor.reshape((1,1,112,112))
|
96 |
+
z_mu, z_sigma = autoencoderkl.encode(input.to(device))
|
97 |
+
z = autoencoderkl.sampling(z_mu, z_sigma)
|
98 |
+
|
99 |
+
unet.eval()
|
100 |
+
guidance_scale = 3.0
|
101 |
+
total_timesteps = 1000
|
102 |
+
latent_space_depth = int(total_timesteps * 0.5)
|
103 |
+
current_img = z
|
104 |
+
current_img = current_img.float()
|
105 |
+
scheduler_ddims.set_timesteps(num_inference_steps=total_timesteps)
|
106 |
+
## Ecodings
|
107 |
+
scheduler_ddims.clip_sample = False
|
108 |
+
class_embedding = embed(torch.zeros(1).long().to(device)).unsqueeze(1)
|
109 |
+
progress_bar = tqdm(range(30))
|
110 |
+
for i in progress_bar: # go through the noising process
|
111 |
+
t = i
|
112 |
+
with torch.no_grad():
|
113 |
+
model_output = unet(current_img, timesteps=torch.Tensor((t,)).to(current_img.device), context=class_embedding)
|
114 |
+
current_img, _ = scheduler_ddims.reversed_step(model_output, t, current_img)
|
115 |
+
progress_bar.set_postfix({"timestep input": t})
|
116 |
+
|
117 |
+
latent_img = current_img
|
118 |
+
## Decoding
|
119 |
+
conditioning = torch.cat([torch.zeros(1).long(), torch.ones(1).long()], dim=0).to(device)
|
120 |
+
class_embedding = embed(conditioning).unsqueeze(1)
|
121 |
+
|
122 |
+
progress_bar = tqdm(range(500))
|
123 |
+
for i in progress_bar: # go through the denoising process
|
124 |
+
t = latent_space_depth - i
|
125 |
+
current_img_double = torch.cat([current_img] * 2)
|
126 |
+
with torch.no_grad():
|
127 |
+
model_output = unet(
|
128 |
+
current_img_double, timesteps=torch.Tensor([t, t]).to(current_img.device), context=class_embedding
|
129 |
+
)
|
130 |
+
noise_pred_uncond, noise_pred_text = model_output.chunk(2)
|
131 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
132 |
+
current_img, _ = scheduler_ddims.step(noise_pred, t, current_img)
|
133 |
+
progress_bar.set_postfix({"timestep input": t})
|
134 |
+
# torch.cuda.empty_cache()
|
135 |
+
current_img_decode = autoencoderkl.decode(current_img)
|
136 |
+
|
137 |
+
out_image = current_img_decode[0][0].to('cpu').detach().numpy()
|
138 |
+
out_image = 255*out_image
|
139 |
+
out_image = (out_image).astype('uint8')
|
140 |
+
output_healthy = out_image.copy()
|
141 |
+
return cv2.resize(out_image,(448,448))
|
142 |
+
|
143 |
+
##------------------> Anomaly detection , contrast and background removal <-------------------##
|
144 |
+
|
145 |
+
def update(brightness,contrast): ##def update(brightness,contrast,thr1,thr2):
|
146 |
+
unhealthy_c = controller(input_unhealthy,brightness,contrast)
|
147 |
+
healthy_c = controller(output_healthy,brightness,contrast)
|
148 |
+
# unhealthy_remove_bg = get_mask(unhealthy_c,thr1,thr2)
|
149 |
+
# healthy_remove_bg = get_mask(healthy_c,thr1,thr2)
|
150 |
+
# diff_img = unhealthy_remove_bg - healthy_remove_bg
|
151 |
+
diff_img = unhealthy_c - healthy_c
|
152 |
+
cmap = plt.get_cmap('inferno')
|
153 |
+
diff_img_a = cmap(diff_img)
|
154 |
+
diff_img = np.delete(diff_img_a, 3, 2)
|
155 |
+
return cv2.resize(healthy_c,(448,448)),cv2.resize(diff_img,(448,448))
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
### --------------> Image generation <----------------------------##############
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
scheduler = DDPMScheduler(num_train_timesteps=1000, schedule="linear_beta", beta_start=0.0015, beta_end=0.0195)
|
164 |
+
# scale_factor = 0.943597137928009
|
165 |
+
# inferer = LatentDiffusionInferer(scheduler, scale_factor=scale_factor)
|
166 |
+
|
167 |
+
|
168 |
+
def get_value(grad):
|
169 |
+
info_dict = {"Normal":1, "Level_1":2, "Level_2":3,"Level_3":4,"Worse":5}
|
170 |
+
return info_dict[grad]
|
171 |
+
|
172 |
+
def generate_condition_bone_images(grad=0):
|
173 |
+
grad_value = get_value(grad)
|
174 |
+
unet.eval()
|
175 |
+
scheduler.clip_sample = True
|
176 |
+
guidance_scale = 3
|
177 |
+
conditioning = torch.cat([torch.zeros(1).long(), grad_value * torch.ones(1).long()], dim=0).to(
|
178 |
+
device
|
179 |
+
) # 2*torch.ones(1).long() is the class label for the UNHEALTHY (tumor) class
|
180 |
+
class_embedding = embed(conditioning).unsqueeze(
|
181 |
+
1
|
182 |
+
) # cross attention expects shape [batch size, sequence length, channels]
|
183 |
+
scheduler.set_timesteps(num_inference_steps=1000)
|
184 |
+
noise = torch.randn((1, 3, 28, 28))
|
185 |
+
noise = noise.to(device)
|
186 |
+
|
187 |
+
progress_bar = tqdm(scheduler.timesteps)
|
188 |
+
for t in progress_bar:
|
189 |
+
with autocast(enabled=True):
|
190 |
+
with torch.no_grad():
|
191 |
+
noise_input = torch.cat([noise] * 2)
|
192 |
+
model_output = unet(noise_input, timesteps=torch.Tensor((t,)).to(noise.device), context=class_embedding,)
|
193 |
+
noise_pred_uncond, noise_pred_text = model_output.chunk(2)
|
194 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
195 |
+
|
196 |
+
noise, _ = scheduler.step(noise_pred, t, noise)
|
197 |
+
with torch.no_grad():
|
198 |
+
noise = autoencoderkl.decode(noise)
|
199 |
+
img = (noise[0][0].to('cpu')).numpy()
|
200 |
+
return cv2.resize(img,(448,448))
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
##--------------------------------> UI <-----------------------------##
|
205 |
+
|
206 |
+
my_theme = 'YenLai/Superhuman'
|
207 |
+
|
208 |
+
|
209 |
+
with gr.Blocks(theme=my_theme,title="Knee Predict") as demo:
|
210 |
+
gr.Markdown(""" # Knee Predict
|
211 |
+
## Generative AI for Anomaly Detection and Analysis for Bone Diseases - Knee Osteoarthritis """ )
|
212 |
+
|
213 |
+
with gr.Tab("Generate Image on conditions"):
|
214 |
+
gr.Markdown("#### Generate Knee X-ray images with condition. You can select the level of Osteoarthritis and click on generate . Then the AI will generate Knee X-ray image of the given condition.")
|
215 |
+
with gr.Row():
|
216 |
+
output =gr.Image(height=450,width=450)
|
217 |
+
gr.Image(value="images/doc_bone.png",label="AI-Assisted Healthcare")
|
218 |
+
# output= gr.Textbox(label="Output Box")
|
219 |
+
gr.Markdown(" ### Select the level of disease severity you want to generate !!")
|
220 |
+
input = gr.Radio(["Normal", "Level_1", "Level_2","Level_3","Worse"], label="Knee Osteoarthritis Disease Severity Levels",scale=1)
|
221 |
+
with gr.Row():
|
222 |
+
greet_btn = gr.Button("Generate",size="lg",scale=1,interactive=True)
|
223 |
+
gr.Markdown()
|
224 |
+
gr.Markdown()
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
with gr.Tab("Anomaly Detection"):
|
229 |
+
gr.Markdown("### From a given unhealthy x-ray image generate a healthy image keeping the size and other important features")
|
230 |
+
with gr.Row():
|
231 |
+
image_input = gr.Image(height=450,width=450,label="Upload your knee x-ray here")
|
232 |
+
img_out_heal = gr.Image(height=450,width=450,label="Healthy image")
|
233 |
+
with gr.Row():
|
234 |
+
gr.Markdown()
|
235 |
+
generate_healthy_button = gr.Button("Generate",size="lg")
|
236 |
+
gr.Markdown()
|
237 |
+
|
238 |
+
gr.Markdown("""### Generate Anomaly by comparing the healthy and unhealthy Knee x-rays
|
239 |
+
#### Click the update button to update the anomaly after changing the contrast and brightness.
|
240 |
+
""")
|
241 |
+
with gr.Row():
|
242 |
+
# image_input = gr.Image()
|
243 |
+
image_output = [gr.Image(height=450,width=450,label="Contrasted"),gr.Image(height=450,width=450,label="Anomaly map")] # contrast and anomaly
|
244 |
+
with gr.Row():
|
245 |
+
gr.Markdown()
|
246 |
+
update_anomaly_button = gr.Button("Update",size="lg")
|
247 |
+
gr.Markdown()
|
248 |
+
inputs_vlaues = [gr.Slider(0, 510, value=284, label="Brightness", info="Choose between 0 and 510"),
|
249 |
+
gr.Slider(0, 254, value=234, label="Contrast", info="Choose between 0 and 254"),
|
250 |
+
# gr.Slider(0, 50, value=7, label="Canny Threshold 1", info="Choose between 0 and 50"),
|
251 |
+
# gr.Slider(0, 50, value=20, label="Canny Threshold 2", info="Choose between 0 and 50"),
|
252 |
+
]
|
253 |
+
|
254 |
+
# inputs_vlaues.append(image_input)
|
255 |
+
gr.Examples(examples='examples' , fn=get_healthy, cache_examples=True, inputs=image_input, outputs=img_out_heal)
|
256 |
+
greet_btn.click(fn=generate_condition_bone_images, inputs=input,outputs=output, api_name="generate_bone")
|
257 |
+
generate_healthy_button.click(get_healthy,inputs=image_input,outputs=img_out_heal)
|
258 |
+
update_anomaly_button.click(update, inputs=inputs_vlaues, outputs=image_output)
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
if __name__ == "__main__":
|
263 |
+
demo.launch(share=True,server_name='0.0.0.0')
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
|
|
|
|
|
268 |
|
|
|
|