lambdaofgod's picture
working model links
84c8245
raw
history blame
2.75 kB
import pandas as pd
import streamlit as st
import math
class ModelFinder:
def __init__(self, models_df):
self.setup_inputs()
self.models_df = models_df
self.n_per_page = 10
def setup_page(self):
st.title("Huggingface model explorer")
st.text(f"search {len(models_df)} models by name or readme")
st.text(
"note that there are many more models but here we only show those with readme"
)
def setup_inputs(self):
col1, col2, col3, col4, col5 = st.columns(5)
self.query_input = col1.text_input("model name query", value="")
self.author_query_input = col2.text_input("author query", value="")
self.id_query_input = col3.text_input("modelId query", value="")
self.readme_query_input = col4.text_input("readme query", value="")
self.page = col5
def get_selected_models_df(self, query, readme_query, id_query, author_query):
return self.models_df[
self.models_df["readme"].str.lower().str.contains(readme_query)
& self.models_df["modelId"].str.lower().str.contains(id_query)
& self.models_df["author"].str.lower().str.contains(author_query)
& self.models_df["model_name"].str.lower().str.contains(query)
]
def show_paged_selected_model_info(self, selected_models_df):
page = self.page.number_input("page", 0, math.ceil(len(selected_models_df) / 10))
selected_models_df_subset = selected_models_df.iloc[
page * self.n_per_page : (page + 1) * self.n_per_page
]
st.write(f"found {len(selected_models_df)} models")
for (model_name, tag, readme) in selected_models_df_subset[
["modelId", "pipeline_tag", "readme"]
].itertuples(index=False):
model_url = f"http://huggingface.co/{model_name}"
with st.expander(f"[{model_name}]({model_url}) ({tag})"):
st.write(readme)
def run(self):
self.setup_page()
selected_models_df = self.get_selected_models_df(
self.query_input,
self.readme_query_input,
self.id_query_input,
self.author_query_input,
)
self.show_paged_selected_model_info(selected_models_df)
def prepare_models_df(path):
df = pd.read_parquet(path).dropna(subset=["readme"])
sep_tuples = [
tp if len(tp) == 2 else ("", tp[0])
for tp in df["modelId"].str.split("/").to_list()
]
authors, model_names = zip(*sep_tuples)
df["author"] = authors
df["model_name"] = model_names
return df
model_path = "models_with_readmes.parquet"
models_df = prepare_models_df(model_path)
app = ModelFinder(models_df)
app.run()