Spaces:
Sleeping
Sleeping
File size: 4,655 Bytes
ddab24e 1bdcf54 b42bafc ddab24e 1bdcf54 b42bafc 1bdcf54 9458bb1 b42bafc 1bdcf54 ddab24e 1bdcf54 ddab24e 1bdcf54 ddab24e 1bdcf54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import gradio as gr
import requests
import json
from huggingface_hub import InferenceClient
API_TOKEN = "your_huggingface_api_token" # Replace with your actual token
API_URL = "https://api-inference.huggingface.co/models/InterSync/Mistral-7B-Instruct-v0.2-Function-Calling"
headers = {"Authorization": f"Bearer {API_TOKEN}"}
def get_weather(location: str, unit: str = "celsius"):
# Replace with your actual weather API call
pass
def get_weather_schema():
return {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state, or zip code"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"], "description": "Unit of temperature"}
},
"required": ["location"]
}
}
def query_model(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
with gr.Blocks() as demo:
gr.Markdown("# Mistral-7B-Instruct Function Calling Demo")
with gr.Row():
with gr.Column(scale=4):
input_text = gr.Textbox(label="Enter your text", lines=5)
submit_btn = gr.Button("Submit")
with gr.Column(scale=6):
output_text = gr.Textbox(label="Model Output", lines=10)
def user(user_message, history):
return "", history + [[user_message, None]] # Add user message to chat history
def bot(history):
if history:
user_message = history[-1][0]
payload = {
"inputs": user_message,
"parameters": {"function_call": "auto"}
}
output = query_model(payload)
else:
return history # Or some default response if history is empty
# Parse the model's response
if 'function_call' in output and 'name' in output['function_call']:
function_name = output['function_call']['name']
arguments = output['function_call'].get('arguments', {})
if function_name == "get_weather" and arguments:
weather_info = get_weather(**arguments)
response_message = f"The weather in {arguments['location']} is {weather_info['description']} with a temperature of {weather_info['temperature']} {weather_info['unit']}."
else:
response_message = "Function not found or invalid arguments."
else:
response_message = output[0]['generated_text']
history[-1][1] = response_message
return history
input_text.change(user, [input_text, output_text], [input_text, output_text], queue=False).then(
bot, [output_text], [output_text]
)
submit_btn.click(user, [input_text, output_text], [input_text, output_text], queue=False).then(
bot, [output_text], [output_text]
)
demo.queue().launch()
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
""" |