File size: 4,655 Bytes
ddab24e
1bdcf54
b42bafc
ddab24e
 
1bdcf54
 
 
 
b42bafc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bdcf54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9458bb1
 
 
 
 
 
 
 
 
b42bafc
 
 
 
 
 
 
 
 
 
 
 
 
1bdcf54
 
 
 
 
 
 
 
 
 
ddab24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bdcf54
ddab24e
1bdcf54
ddab24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bdcf54
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
import requests
import json
from huggingface_hub import InferenceClient

API_TOKEN = "your_huggingface_api_token" # Replace with your actual token
API_URL = "https://api-inference.huggingface.co/models/InterSync/Mistral-7B-Instruct-v0.2-Function-Calling"
headers = {"Authorization": f"Bearer {API_TOKEN}"}

def get_weather(location: str, unit: str = "celsius"):
    # Replace with your actual weather API call
    pass 
    
def get_weather_schema():
    return {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {"type": "string", "description": "The city and state, or zip code"},
                "unit": {"type": "string", "enum": ["celsius", "fahrenheit"], "description": "Unit of temperature"}
            },
            "required": ["location"]
        }
    }

def query_model(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

with gr.Blocks() as demo:
    gr.Markdown("# Mistral-7B-Instruct Function Calling Demo")
    
    with gr.Row():
        with gr.Column(scale=4):
            input_text = gr.Textbox(label="Enter your text", lines=5)
            submit_btn = gr.Button("Submit")
        with gr.Column(scale=6):
            output_text = gr.Textbox(label="Model Output", lines=10)

    def user(user_message, history):
        return "", history + [[user_message, None]]  # Add user message to chat history

    def bot(history):
        if history:    
            user_message = history[-1][0]
            payload = {
                "inputs": user_message,
                "parameters": {"function_call": "auto"}
            }
            output = query_model(payload)
        else:
            return history  # Or some default response if history is empty
        # Parse the model's response
        if 'function_call' in output and 'name' in output['function_call']:
            function_name = output['function_call']['name']
            arguments = output['function_call'].get('arguments', {})
            if function_name == "get_weather" and arguments:
                weather_info = get_weather(**arguments)
                response_message = f"The weather in {arguments['location']} is {weather_info['description']} with a temperature of {weather_info['temperature']} {weather_info['unit']}."
            else:
                response_message = "Function not found or invalid arguments."
        else:
            response_message = output[0]['generated_text']

        history[-1][1] = response_message
        return history

    input_text.change(user, [input_text, output_text], [input_text, output_text], queue=False).then(
        bot, [output_text], [output_text]
    )
    submit_btn.click(user, [input_text, output_text], [input_text, output_text], queue=False).then(
        bot, [output_text], [output_text]
    )

demo.queue().launch()
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()
"""