import gradio as gr import requests import json from huggingface_hub import InferenceClient API_TOKEN = "your_huggingface_api_token" # Replace with your actual token API_URL = "https://api-inference.huggingface.co/models/InterSync/Mistral-7B-Instruct-v0.2-Function-Calling" headers = {"Authorization": f"Bearer {API_TOKEN}"} def get_weather(location: str, unit: str = "celsius"): # Replace with your actual weather API call pass def get_weather_schema(): return { "name": "get_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": {"type": "string", "description": "The city and state, or zip code"}, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"], "description": "Unit of temperature"} }, "required": ["location"] } } def query_model(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() with gr.Blocks() as demo: gr.Markdown("# Mistral-7B-Instruct Function Calling Demo") with gr.Row(): with gr.Column(scale=4): input_text = gr.Textbox(label="Enter your text", lines=5) submit_btn = gr.Button("Submit") with gr.Column(scale=6): output_text = gr.Textbox(label="Model Output", lines=10) def user(user_message, history): return "", history + [[user_message, None]] # Add user message to chat history def bot(history): if history: user_message = history[-1][0] payload = { "inputs": user_message, "parameters": {"function_call": "auto"} } output = query_model(payload) else: return history # Or some default response if history is empty # Parse the model's response if 'function_call' in output and 'name' in output['function_call']: function_name = output['function_call']['name'] arguments = output['function_call'].get('arguments', {}) if function_name == "get_weather" and arguments: weather_info = get_weather(**arguments) response_message = f"The weather in {arguments['location']} is {weather_info['description']} with a temperature of {weather_info['temperature']} {weather_info['unit']}." else: response_message = "Function not found or invalid arguments." else: response_message = output[0]['generated_text'] history[-1][1] = response_message return history input_text.change(user, [input_text, output_text], [input_text, output_text], queue=False).then( bot, [output_text], [output_text] ) submit_btn.click(user, [input_text, output_text], [input_text, output_text], queue=False).then( bot, [output_text], [output_text] ) demo.queue().launch() """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch() """