chore: update something
Browse files- docsifer/__init__.py +32 -8
- docsifer/router.py +8 -0
- docsifer/service.py +26 -4
docsifer/__init__.py
CHANGED
|
@@ -101,6 +101,7 @@ def call_convert_api(
|
|
| 101 |
openai_base_url: Optional[str] = None,
|
| 102 |
openai_api_key: Optional[str] = None,
|
| 103 |
openai_model: Optional[str] = None,
|
|
|
|
| 104 |
) -> Tuple[str, str]:
|
| 105 |
"""
|
| 106 |
Call the /v1/convert endpoint, returning (markdown_content, md_file_path).
|
|
@@ -115,6 +116,7 @@ def call_convert_api(
|
|
| 115 |
openai_base_url (str, optional): Base URL for OpenAI or compatible LLM.
|
| 116 |
openai_api_key (str, optional): API key for the LLM.
|
| 117 |
openai_model (str, optional): Model name to use for LLM-based extraction.
|
|
|
|
| 118 |
|
| 119 |
Returns:
|
| 120 |
(str, str):
|
|
@@ -143,6 +145,14 @@ def call_convert_api(
|
|
| 143 |
if len(openai_dict) <= 3:
|
| 144 |
data.pop("openai")
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
# Decide if we're sending a file or a URL
|
| 147 |
files = {}
|
| 148 |
if file_obj:
|
|
@@ -220,7 +230,7 @@ def call_stats_api_df() -> Tuple[pd.DataFrame, pd.DataFrame]:
|
|
| 220 |
all_models = set()
|
| 221 |
for period_key in ["total", "daily", "weekly", "monthly", "yearly"]:
|
| 222 |
period_dict = bucket.get(period_key, {})
|
| 223 |
-
all_models.update(period_dict.keys())
|
| 224 |
|
| 225 |
result_dict = {
|
| 226 |
"Model": [],
|
|
@@ -251,7 +261,7 @@ def create_main_interface():
|
|
| 251 |
Create a Gradio Blocks interface that includes:
|
| 252 |
1) 'Conversion Playground' Tab:
|
| 253 |
- File upload OR URL-based conversion
|
| 254 |
-
- Optional OpenAI configuration
|
| 255 |
- Convert button
|
| 256 |
- Display of conversion result as Markdown
|
| 257 |
- Downloadable .md file
|
|
@@ -317,6 +327,17 @@ def create_main_interface():
|
|
| 317 |
value="gpt-4o-mini",
|
| 318 |
)
|
| 319 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
with gr.Accordion("Conversion Settings", open=True):
|
| 321 |
gr.Markdown(
|
| 322 |
"Enable to remove <style> tags or hidden elements "
|
|
@@ -371,11 +392,12 @@ def create_main_interface():
|
|
| 371 |
)
|
| 372 |
|
| 373 |
# Callback function triggered by convert_btn.click
|
| 374 |
-
def on_convert(
|
|
|
|
|
|
|
| 375 |
"""
|
| 376 |
-
Converts the uploaded file or a URL to Markdown by calling the Docsifer
|
| 377 |
-
|
| 378 |
-
temporary .md file for download.
|
| 379 |
|
| 380 |
Args:
|
| 381 |
file_bytes (bytes): The raw file content (None if not uploaded).
|
|
@@ -384,20 +406,20 @@ def create_main_interface():
|
|
| 384 |
api_key (str): The API key for the LLM.
|
| 385 |
model_id (str): The model to use for the LLM.
|
| 386 |
cleanup (bool): Whether to enable cleanup on HTML files.
|
|
|
|
| 387 |
|
| 388 |
Returns:
|
| 389 |
(str, str):
|
| 390 |
- The Markdown content or error message.
|
| 391 |
- The path to the temp .md file for download.
|
| 392 |
"""
|
| 393 |
-
# If file is not provided, we attempt the URL approach
|
| 394 |
if not file_bytes and not url_str:
|
| 395 |
return "β Please upload a file or provide a URL.", None
|
| 396 |
|
| 397 |
# Create a unique temporary filename if file is present
|
| 398 |
unique_name = f"{scuid()}.tmp" if file_bytes else ""
|
| 399 |
|
| 400 |
-
# Call the convert API
|
| 401 |
markdown, temp_md_path = call_convert_api(
|
| 402 |
file_obj=file_bytes,
|
| 403 |
filename=unique_name,
|
|
@@ -406,6 +428,7 @@ def create_main_interface():
|
|
| 406 |
openai_api_key=api_key,
|
| 407 |
openai_model=model_id,
|
| 408 |
cleanup=cleanup,
|
|
|
|
| 409 |
)
|
| 410 |
|
| 411 |
return markdown, temp_md_path
|
|
@@ -420,6 +443,7 @@ def create_main_interface():
|
|
| 420 |
openai_api_key,
|
| 421 |
openai_model,
|
| 422 |
cleanup_toggle,
|
|
|
|
| 423 |
],
|
| 424 |
outputs=[output_md, download_file],
|
| 425 |
)
|
|
|
|
| 101 |
openai_base_url: Optional[str] = None,
|
| 102 |
openai_api_key: Optional[str] = None,
|
| 103 |
openai_model: Optional[str] = None,
|
| 104 |
+
http_cookies: Optional[str] = None,
|
| 105 |
) -> Tuple[str, str]:
|
| 106 |
"""
|
| 107 |
Call the /v1/convert endpoint, returning (markdown_content, md_file_path).
|
|
|
|
| 116 |
openai_base_url (str, optional): Base URL for OpenAI or compatible LLM.
|
| 117 |
openai_api_key (str, optional): API key for the LLM.
|
| 118 |
openai_model (str, optional): Model name to use for LLM-based extraction.
|
| 119 |
+
http_cookies (str, optional): JSON-formatted string representing cookies for HTTP requests.
|
| 120 |
|
| 121 |
Returns:
|
| 122 |
(str, str):
|
|
|
|
| 145 |
if len(openai_dict) <= 3:
|
| 146 |
data.pop("openai")
|
| 147 |
|
| 148 |
+
# Build the HTTP configuration object
|
| 149 |
+
if http_cookies and http_cookies.strip():
|
| 150 |
+
try:
|
| 151 |
+
cookies_obj = json.loads(http_cookies)
|
| 152 |
+
except Exception as e:
|
| 153 |
+
return (f"β Invalid JSON for HTTP Cookies: {str(e)}", "")
|
| 154 |
+
data["http"] = json.dumps({"cookies": cookies_obj})
|
| 155 |
+
|
| 156 |
# Decide if we're sending a file or a URL
|
| 157 |
files = {}
|
| 158 |
if file_obj:
|
|
|
|
| 230 |
all_models = set()
|
| 231 |
for period_key in ["total", "daily", "weekly", "monthly", "yearly"]:
|
| 232 |
period_dict = bucket.get(period_key, {})
|
| 233 |
+
all_models.update(period_dict.keys())
|
| 234 |
|
| 235 |
result_dict = {
|
| 236 |
"Model": [],
|
|
|
|
| 261 |
Create a Gradio Blocks interface that includes:
|
| 262 |
1) 'Conversion Playground' Tab:
|
| 263 |
- File upload OR URL-based conversion
|
| 264 |
+
- Optional OpenAI configuration and HTTP configuration
|
| 265 |
- Convert button
|
| 266 |
- Display of conversion result as Markdown
|
| 267 |
- Downloadable .md file
|
|
|
|
| 327 |
value="gpt-4o-mini",
|
| 328 |
)
|
| 329 |
|
| 330 |
+
with gr.Accordion("HTTP Configuration (Optional)", open=False):
|
| 331 |
+
gr.Markdown(
|
| 332 |
+
"Provide additional HTTP configuration. "
|
| 333 |
+
"In particular, you can specify cookies as a JSON object to be included in the request."
|
| 334 |
+
)
|
| 335 |
+
http_cookies = gr.Textbox(
|
| 336 |
+
label="Cookies",
|
| 337 |
+
placeholder='e.g. {"session": "abcd1234"}',
|
| 338 |
+
lines=3,
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
with gr.Accordion("Conversion Settings", open=True):
|
| 342 |
gr.Markdown(
|
| 343 |
"Enable to remove <style> tags or hidden elements "
|
|
|
|
| 392 |
)
|
| 393 |
|
| 394 |
# Callback function triggered by convert_btn.click
|
| 395 |
+
def on_convert(
|
| 396 |
+
file_bytes, url_str, base_url, api_key, model_id, cleanup, http_cookies
|
| 397 |
+
):
|
| 398 |
"""
|
| 399 |
+
Converts the uploaded file or a URL to Markdown by calling the Docsifer API.
|
| 400 |
+
Returns the resulting Markdown content and path to the temporary .md file for download.
|
|
|
|
| 401 |
|
| 402 |
Args:
|
| 403 |
file_bytes (bytes): The raw file content (None if not uploaded).
|
|
|
|
| 406 |
api_key (str): The API key for the LLM.
|
| 407 |
model_id (str): The model to use for the LLM.
|
| 408 |
cleanup (bool): Whether to enable cleanup on HTML files.
|
| 409 |
+
http_cookies (str): JSON-formatted string for HTTP cookies.
|
| 410 |
|
| 411 |
Returns:
|
| 412 |
(str, str):
|
| 413 |
- The Markdown content or error message.
|
| 414 |
- The path to the temp .md file for download.
|
| 415 |
"""
|
|
|
|
| 416 |
if not file_bytes and not url_str:
|
| 417 |
return "β Please upload a file or provide a URL.", None
|
| 418 |
|
| 419 |
# Create a unique temporary filename if file is present
|
| 420 |
unique_name = f"{scuid()}.tmp" if file_bytes else ""
|
| 421 |
|
| 422 |
+
# Call the convert API with HTTP configuration
|
| 423 |
markdown, temp_md_path = call_convert_api(
|
| 424 |
file_obj=file_bytes,
|
| 425 |
filename=unique_name,
|
|
|
|
| 428 |
openai_api_key=api_key,
|
| 429 |
openai_model=model_id,
|
| 430 |
cleanup=cleanup,
|
| 431 |
+
http_cookies=http_cookies,
|
| 432 |
)
|
| 433 |
|
| 434 |
return markdown, temp_md_path
|
|
|
|
| 443 |
openai_api_key,
|
| 444 |
openai_model,
|
| 445 |
cleanup_toggle,
|
| 446 |
+
http_cookies,
|
| 447 |
],
|
| 448 |
outputs=[output_md, download_file],
|
| 449 |
)
|
docsifer/router.py
CHANGED
|
@@ -39,6 +39,7 @@ async def convert_document(
|
|
| 39 |
None, description="URL to convert (used only if no file is provided)"
|
| 40 |
),
|
| 41 |
openai: str = Form("{}", description="OpenAI config as a JSON object"),
|
|
|
|
| 42 |
settings: str = Form("{}", description="Settings as a JSON object"),
|
| 43 |
):
|
| 44 |
"""
|
|
@@ -55,6 +56,11 @@ async def convert_document(
|
|
| 55 |
except json.JSONDecodeError:
|
| 56 |
raise ValueError("Invalid JSON in 'openai' parameter.")
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
try:
|
| 59 |
settings_config = json.loads(settings) if settings else {}
|
| 60 |
except json.JSONDecodeError:
|
|
@@ -71,6 +77,7 @@ async def convert_document(
|
|
| 71 |
result, token_count = await docsifer_service.convert_file(
|
| 72 |
source=str(temp_path),
|
| 73 |
openai_config=openai_config,
|
|
|
|
| 74 |
cleanup=cleanup,
|
| 75 |
)
|
| 76 |
elif url:
|
|
@@ -90,6 +97,7 @@ async def convert_document(
|
|
| 90 |
result, token_count = await docsifer_service.convert_file(
|
| 91 |
source=str(url),
|
| 92 |
openai_config=openai_config,
|
|
|
|
| 93 |
cleanup=cleanup,
|
| 94 |
)
|
| 95 |
else:
|
|
|
|
| 39 |
None, description="URL to convert (used only if no file is provided)"
|
| 40 |
),
|
| 41 |
openai: str = Form("{}", description="OpenAI config as a JSON object"),
|
| 42 |
+
http: str = Form("{}", description="HTTP config as a JSON object"),
|
| 43 |
settings: str = Form("{}", description="Settings as a JSON object"),
|
| 44 |
):
|
| 45 |
"""
|
|
|
|
| 56 |
except json.JSONDecodeError:
|
| 57 |
raise ValueError("Invalid JSON in 'openai' parameter.")
|
| 58 |
|
| 59 |
+
try:
|
| 60 |
+
http_config = json.loads(http) if http else {}
|
| 61 |
+
except json.JSONDecodeError:
|
| 62 |
+
raise ValueError("Invalid JSON in 'http' parameter.")
|
| 63 |
+
|
| 64 |
try:
|
| 65 |
settings_config = json.loads(settings) if settings else {}
|
| 66 |
except json.JSONDecodeError:
|
|
|
|
| 77 |
result, token_count = await docsifer_service.convert_file(
|
| 78 |
source=str(temp_path),
|
| 79 |
openai_config=openai_config,
|
| 80 |
+
http_config=http_config,
|
| 81 |
cleanup=cleanup,
|
| 82 |
)
|
| 83 |
elif url:
|
|
|
|
| 97 |
result, token_count = await docsifer_service.convert_file(
|
| 98 |
source=str(url),
|
| 99 |
openai_config=openai_config,
|
| 100 |
+
http_config=http_config,
|
| 101 |
cleanup=cleanup,
|
| 102 |
)
|
| 103 |
else:
|
docsifer/service.py
CHANGED
|
@@ -3,8 +3,11 @@ from __future__ import annotations
|
|
| 3 |
import asyncio
|
| 4 |
import logging
|
| 5 |
import tempfile
|
|
|
|
|
|
|
| 6 |
import magic
|
| 7 |
import mimetypes
|
|
|
|
| 8 |
from pathlib import Path
|
| 9 |
from typing import Optional, Dict, Tuple, Any
|
| 10 |
from scuid import scuid
|
|
@@ -107,7 +110,11 @@ class DocsiferService:
|
|
| 107 |
return len(text.split())
|
| 108 |
|
| 109 |
def _convert_sync(
|
| 110 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
) -> Tuple[Dict[str, str], int]:
|
| 112 |
"""
|
| 113 |
Synchronously convert a file at `file_path` to Markdown.
|
|
@@ -117,6 +124,7 @@ class DocsiferService:
|
|
| 117 |
Args:
|
| 118 |
source: Path to the source file or URL to fetch content from.
|
| 119 |
openai_config: Optional dictionary with OpenAI configuration.
|
|
|
|
| 120 |
cleanup: Whether to perform HTML cleanup if the file is an HTML file.
|
| 121 |
|
| 122 |
Returns:
|
|
@@ -164,12 +172,21 @@ class DocsiferService:
|
|
| 164 |
else:
|
| 165 |
md_converter = self._basic_markitdown
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
try:
|
| 168 |
result_obj = md_converter.convert(source)
|
| 169 |
except Exception as e:
|
| 170 |
logger.error("MarkItDown conversion failed: %s", e)
|
| 171 |
raise RuntimeError(f"Conversion failed for '{source}': {e}")
|
| 172 |
-
|
| 173 |
if isinstance(source, Path) and source.exists():
|
| 174 |
source.unlink()
|
| 175 |
|
|
@@ -183,7 +200,11 @@ class DocsiferService:
|
|
| 183 |
return result_dict, token_count
|
| 184 |
|
| 185 |
async def convert_file(
|
| 186 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
) -> Tuple[Dict[str, str], int]:
|
| 188 |
"""
|
| 189 |
Asynchronously convert a file at `source` to Markdown.
|
|
@@ -192,6 +213,7 @@ class DocsiferService:
|
|
| 192 |
Args:
|
| 193 |
source: Path to the file to convert or a URL to fetch content from.
|
| 194 |
openai_config: Optional OpenAI configuration dictionary.
|
|
|
|
| 195 |
cleanup: Whether to perform HTML cleanup if applicable.
|
| 196 |
|
| 197 |
Returns:
|
|
@@ -199,5 +221,5 @@ class DocsiferService:
|
|
| 199 |
and the token count.
|
| 200 |
"""
|
| 201 |
return await asyncio.to_thread(
|
| 202 |
-
self._convert_sync, source, openai_config, cleanup
|
| 203 |
)
|
|
|
|
| 3 |
import asyncio
|
| 4 |
import logging
|
| 5 |
import tempfile
|
| 6 |
+
|
| 7 |
+
import requests.cookies
|
| 8 |
import magic
|
| 9 |
import mimetypes
|
| 10 |
+
import requests
|
| 11 |
from pathlib import Path
|
| 12 |
from typing import Optional, Dict, Tuple, Any
|
| 13 |
from scuid import scuid
|
|
|
|
| 110 |
return len(text.split())
|
| 111 |
|
| 112 |
def _convert_sync(
|
| 113 |
+
self,
|
| 114 |
+
source: str,
|
| 115 |
+
openai_config: Optional[dict] = None,
|
| 116 |
+
http_config: Optional[dict] = None,
|
| 117 |
+
cleanup: bool = True,
|
| 118 |
) -> Tuple[Dict[str, str], int]:
|
| 119 |
"""
|
| 120 |
Synchronously convert a file at `file_path` to Markdown.
|
|
|
|
| 124 |
Args:
|
| 125 |
source: Path to the source file or URL to fetch content from.
|
| 126 |
openai_config: Optional dictionary with OpenAI configuration.
|
| 127 |
+
http_config: Optional dictionary with HTTP configuration.
|
| 128 |
cleanup: Whether to perform HTML cleanup if the file is an HTML file.
|
| 129 |
|
| 130 |
Returns:
|
|
|
|
| 172 |
else:
|
| 173 |
md_converter = self._basic_markitdown
|
| 174 |
|
| 175 |
+
# Load cookies if provided in the HTTP config.
|
| 176 |
+
if http_config:
|
| 177 |
+
if "cookies" in http_config:
|
| 178 |
+
requests.cookies.cookiejar_from_dict(
|
| 179 |
+
http_config["cookies"],
|
| 180 |
+
requests.cookies.RequestsCookieJar,
|
| 181 |
+
overwrite=True,
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
try:
|
| 185 |
result_obj = md_converter.convert(source)
|
| 186 |
except Exception as e:
|
| 187 |
logger.error("MarkItDown conversion failed: %s", e)
|
| 188 |
raise RuntimeError(f"Conversion failed for '{source}': {e}")
|
| 189 |
+
|
| 190 |
if isinstance(source, Path) and source.exists():
|
| 191 |
source.unlink()
|
| 192 |
|
|
|
|
| 200 |
return result_dict, token_count
|
| 201 |
|
| 202 |
async def convert_file(
|
| 203 |
+
self,
|
| 204 |
+
source: str,
|
| 205 |
+
openai_config: Optional[dict] = None,
|
| 206 |
+
http_config: Optional[dict] = None,
|
| 207 |
+
cleanup: bool = True,
|
| 208 |
) -> Tuple[Dict[str, str], int]:
|
| 209 |
"""
|
| 210 |
Asynchronously convert a file at `source` to Markdown.
|
|
|
|
| 213 |
Args:
|
| 214 |
source: Path to the file to convert or a URL to fetch content from.
|
| 215 |
openai_config: Optional OpenAI configuration dictionary.
|
| 216 |
+
http_config: Optional HTTP configuration dictionary.
|
| 217 |
cleanup: Whether to perform HTML cleanup if applicable.
|
| 218 |
|
| 219 |
Returns:
|
|
|
|
| 221 |
and the token count.
|
| 222 |
"""
|
| 223 |
return await asyncio.to_thread(
|
| 224 |
+
self._convert_sync, source, openai_config, http_config, cleanup
|
| 225 |
)
|