File size: 10,702 Bytes
7a58a7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
import math
import triton
import triton.language as tl




# We don't run auto-tuning every time to keep the tutorial fast. Uncommenting
# the code below and commenting out the equivalent parameters is convenient for
# re-tuning.
#@triton.autotune(
#    configs=[
#        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64}, num_stages=4, num_warps=8),
#        triton.Config({'BLOCK_M': 256, 'BLOCK_N': 64}, num_stages=3, num_warps=8),
#        triton.Config({'BLOCK_M': 256, 'BLOCK_N': 32}, num_stages=3, num_warps=8),
#        triton.Config({'BLOCK_M': 256, 'BLOCK_N': 32}, num_stages=3, num_warps=4),
#        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32}, num_stages=3, num_warps=4),
#        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32}, num_stages=4, num_warps=4),
#        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64}, num_stages=3, num_warps=4),
#        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64}, num_stages=4, num_warps=4),
#        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64}, num_stages=3, num_warps=8),
#        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64}, num_stages=7, num_warps=8),
#        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32}, num_stages=7, num_warps=8),
#        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32}, num_stages=6, num_warps=8),
#        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32}, num_stages=5, num_warps=8),
#        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32}, num_stages=4, num_warps=8),
#        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64}, num_stages=6, num_warps=4),
#    ],
#    key=['N_CTX'],
#)
@triton.jit
def _attn_fwd_prefill(Q1, K1, Q2, K2, V, sm_scale, M, Out,  #
              stride_qz, stride_qh, stride_qm, stride_qk,  #
              stride_kz, stride_kh, stride_kn, stride_kk,  #
              stride_vz, stride_vh, stride_vk, stride_vn,  #
              stride_oz, stride_oh, stride_om, stride_on,  #
              Z, H,  #
              Q_CTX: tl.constexpr,  #
              N_CTX: tl.constexpr,  #
              WINDOW: tl.constexpr,  #
              BLOCK_M: tl.constexpr,  #
              BLOCK_DMODEL: tl.constexpr,  #
              BLOCK_N: tl.constexpr,  #
              ):
    start_m = tl.program_id(0)
    off_hz = tl.program_id(1)
    off_z = off_hz // H
    off_h = off_hz % H
    qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh

    # block pointers
    Q1_block_ptr = tl.make_block_ptr(
        base=Q1 + qvk_offset,
        shape=(Q_CTX, BLOCK_DMODEL),
        strides=(stride_qm, stride_qk),
        offsets=(start_m * BLOCK_M, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0),
    )
    Q2_block_ptr = tl.make_block_ptr(
        base=Q2 + qvk_offset,
        shape=(Q_CTX, BLOCK_DMODEL),
        strides=(stride_qm, stride_qk),
        offsets=(start_m * BLOCK_M, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0),
    )
    V_block_ptr = tl.make_block_ptr(
        base=V + qvk_offset,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_vk, stride_vn),
        offsets=(0, 0),
        block_shape=(BLOCK_N, BLOCK_DMODEL),
        order=(1, 0),
    )
    K1_block_ptr = tl.make_block_ptr(
        base=K1 + qvk_offset,
        shape=(BLOCK_DMODEL, N_CTX),
        strides=(stride_kk, stride_kn),
        offsets=(0, 0),
        block_shape=(BLOCK_DMODEL, BLOCK_N),
        order=(0, 1),
    )
    K2_block_ptr = tl.make_block_ptr(
        base=K2 + qvk_offset,
        shape=(BLOCK_DMODEL, N_CTX),
        strides=(stride_kk, stride_kn),
        offsets=(0, 0),
        block_shape=(BLOCK_DMODEL, BLOCK_N),
        order=(0, 1),
    )
    O_block_ptr = tl.make_block_ptr(
        base=Out + qvk_offset,
        shape=(Q_CTX, BLOCK_DMODEL),
        strides=(stride_om, stride_on),
        offsets=(start_m * BLOCK_M, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0),
    )
    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    # initialize pointer to m and l
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
    acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
    # load scales
    qk_scale = sm_scale
    qk_scale *= 1.442695040888963#1.44269504  # 1/log(2)
    # load q: it will stay in SRAM throughout
    #q = tl.load(Q_block_ptr)
    if start_m * BLOCK_M + BLOCK_M > Q_CTX:
        q1 = tl.load(Q1_block_ptr, boundary_check=(0,), padding_option='zero')
        q2 = tl.load(Q2_block_ptr, boundary_check=(0,), padding_option='zero')
    else:
        q1 = tl.load(Q1_block_ptr)
        q2 = tl.load(Q2_block_ptr)
    #q1 = (q1 * qk_scale).to(tl.float16)
    #q2 = (q2 * qk_scale).to(tl.float16)
                
    lo = 0
    hi = (start_m + 1) * BLOCK_M 
    # loop over k, v and update accumulator
    for start_n in range(lo, hi, BLOCK_N):
        start_n = tl.multiple_of(start_n, BLOCK_N)
        #qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) #?
        #qk = qk.to(tl.float16)
        # if use condition, qk has to be float32, then convert to float16...
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        if start_n + BLOCK_N - 1 > start_m * BLOCK_M - 1:
            qk += tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), 0, -1.0e6)#float("-inf"))
        
        #qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf"))
        # -- compute qk ----
        #k = tl.load(K_block_ptr)
        # case 1: only need group attention: q2, k2
        if BLOCK_N + start_n <= (start_m * BLOCK_M - WINDOW + 1):
            if BLOCK_N + start_n >= N_CTX:
                k2 = tl.load(K2_block_ptr, boundary_check=(1,), padding_option='zero')
                v = tl.load(V_block_ptr, boundary_check=(0,), padding_option='zero')
            else:
                k2 = tl.load(K2_block_ptr)
                v = tl.load(V_block_ptr)
            #qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
            #qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float16)
            qk += tl.dot(q2, k2)#, out_dtype=tl.float16)
        else:
            #case 2: only need neighbor attention: q1, k1
            if start_n >= (start_m+1) * BLOCK_M - WINDOW:
                if BLOCK_N + start_n >= N_CTX:
                    k1 = tl.load(K1_block_ptr, boundary_check=(1,), padding_option='zero')
                    v = tl.load(V_block_ptr, boundary_check=(0,), padding_option='zero')
                else:
                    k1 = tl.load(K1_block_ptr)
                    v = tl.load(V_block_ptr)
                #qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
                #qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float16)
                qk += tl.dot(q1, k1)#, out_dtype=tl.float16)
            else:
                #case 3: need both q1, k1 and q2, k2
                if BLOCK_N + start_n >= N_CTX:
                    k1 = tl.load(K1_block_ptr, boundary_check=(1,), padding_option='zero')
                    k2 = tl.load(K2_block_ptr, boundary_check=(1,), padding_option='zero')
                    v = tl.load(V_block_ptr, boundary_check=(0,), padding_option='zero')
                else:
                    k1 = tl.load(K1_block_ptr)
                    k2 = tl.load(K2_block_ptr)
                    v = tl.load(V_block_ptr)
                #qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
                #qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float16)
                qk1 = tl.dot(q1, k1)#, out_dtype=tl.float16)
                qk2 = tl.dot(q2, k2)#, out_dtype=tl.float16)
                #merge_mask = tl.abs((offs_m[:, None] - (start_n + offs_n[None, :]))) >= WINDOW
                #qk += tl.where(merge_mask, qk2, qk1)
                qk += tl.where(tl.abs(offs_m[:, None] - (start_n + offs_n[None, :])) < WINDOW, qk1, qk2)

        qk *= qk_scale

        m_ij = tl.maximum(m_i, tl.max(qk, 1))
        qk = qk - m_ij[:, None]
        p = tl.math.exp2(qk)
        l_ij = tl.sum(p, 1)
        # -- update m_i and l_i
        alpha = tl.math.exp2(m_i - m_ij)
        l_i = l_i * alpha + l_ij
        # -- update output accumulator --
        acc = acc * alpha[:, None]
        # update acc
        #v = tl.load(V_block_ptr)
        #v = tl.load(V_block_ptr, boundary_check=(0,), padding_option='zero')
        acc += tl.dot(p.to(tl.float16), v)
        # update m_i and l_i
        m_i = m_ij
        V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
        K1_block_ptr = tl.advance(K1_block_ptr, (0, BLOCK_N))
        K2_block_ptr = tl.advance(K2_block_ptr, (0, BLOCK_N))

    # epilogue
    m_i += tl.math.log2(l_i)
    acc = acc / l_i[:, None]
    m_ptrs = M + off_hz * Q_CTX + offs_m
    if start_m * BLOCK_M + BLOCK_M >= Q_CTX:
        tl.store(m_ptrs, m_i, mask=offs_m < Q_CTX)
        tl.store(O_block_ptr, acc.to(Out.type.element_ty), boundary_check=(0,))
    else:
        tl.store(m_ptrs, m_i)
        tl.store(O_block_ptr, acc.to(Out.type.element_ty))


def prefill_flash_forward(q1, k1, q2, k2, v, q_len, seq_len, window, sm_scale=None):
    # shape constraints
    Lq, Lk, Lv = q1.shape[-1], k1.shape[-1], v.shape[-1]
    assert Lq == Lk and Lk == Lv
    assert Lk in {16, 32, 64, 128}
    assert q_len == seq_len or q_len == 1 
    if sm_scale is None:
        sm_scale = 1.0 / math.sqrt(Lq) # the default scale factor.
    o = torch.empty_like(q1, device=q1.device)
    block_m = 128
    block_n = 64 # if Lk <= 64 else 32
    num_stages = 4 if Lk <= 64 else 3
    num_warps = 4
    # Tuning for H100
    if torch.cuda.get_device_capability()[0] == 9:
        num_warps = 8
        num_stages = 7 if Lk >= 64 else 3
    grid = (triton.cdiv(q1.shape[2], block_m), q1.shape[0] * q1.shape[1], 1)
    M = torch.empty((q1.shape[0], q1.shape[1], q1.shape[2]), device=q1.device, dtype=torch.float32)
    with torch.cuda.device(v.device.index):
        # https://github.com/Dao-AILab/flash-attention/commit/9795159082f6e6c847db2bf4284fd17326c31fbd
        # to avoid the device issue .
        _attn_fwd_prefill[grid](
            q1, k1, q2, k2, v, sm_scale, M, o,  #
            q1.stride(0), q1.stride(1), q1.stride(2), q1.stride(3),  #
            k1.stride(0), k1.stride(1), k1.stride(2), k1.stride(3),  #
            v.stride(0), v.stride(1), v.stride(2), v.stride(3),  #
            o.stride(0), o.stride(1), o.stride(2), o.stride(3),  #
            q1.shape[0], q1.shape[1],  #
            Q_CTX=q_len, 
            N_CTX=seq_len,  #
            BLOCK_M=block_m,  #
            BLOCK_N=block_n,  #
            WINDOW=window,
            BLOCK_DMODEL=Lk,  #
            num_warps=num_warps,  #
            num_stages=num_stages  #
        )

    return o