Spaces:
Running
Running
File size: 5,696 Bytes
e8f9d10 1dc5abe e8f9d10 95ff73d e8f9d10 95ff73d e8f9d10 95ff73d e8f9d10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# filename: __init__.py
"""
LightweightEmbeddings - FastAPI Application Entry Point
This application provides text and image embeddings using multiple text models and one image model.
Supported text model IDs:
- "multilingual-e5-small"
- "paraphrase-multilingual-MiniLM-L12-v2"
- "bge-m3"
Supported image model ID:
- "google/siglip-base-patch16-256-multilingual"
"""
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import gradio as gr
import requests
import json
from gradio.routes import mount_gradio_app
# Application metadata
__version__ = "1.0.0"
__author__ = "lamhieu"
__description__ = "Fast, lightweight, multilingual embeddings solution."
# Set your embeddings API URL here (change host/port if needed)
EMBEDDINGS_API_URL = "http://localhost:7860/v1/embeddings"
# Initialize FastAPI application
app = FastAPI(
title="Lightweight Embeddings API",
description=__description__,
version=__version__,
docs_url="/docs",
redoc_url="/redoc",
)
# Configure CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Adjust if needed for specific domains
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Include your existing router (which provides /v1/embeddings, /v1/rank, etc.)
from .router import router
app.include_router(router, prefix="/v1")
def call_embeddings_api(user_input: str, selected_model: str) -> str:
"""
Send a request to the /v1/embeddings endpoint with the given model and input.
Return a pretty-printed JSON response or an error message.
"""
payload = {
"model": selected_model,
"input": user_input,
}
headers = {"Content-Type": "application/json"}
try:
response = requests.post(
EMBEDDINGS_API_URL, json=payload, headers=headers, timeout=20
)
except requests.exceptions.RequestException as e:
return f"β Network Error: {str(e)}"
if response.status_code != 200:
# Provide detailed error message
return f"β API Error {response.status_code}: {response.text}"
try:
data = response.json()
return json.dumps(data, indent=2)
except ValueError:
return "β Failed to parse JSON from API response."
def create_main_interface():
"""
Creates a Gradio Blocks interface showing project info and an embeddings playground.
"""
# Metadata to be displayed
root_data = {
"project": "Lightweight Embeddings Service",
"version": "1.0.0",
"description": (
"Fast and efficient multilingual text and image embeddings service "
"powered by sentence-transformers, supporting 100+ languages and multi-modal inputs"
),
"docs": "https://lamhieu-lightweight-embeddings.hf.space/docs",
"github": "https://github.com/lh0x00/lightweight-embeddings",
"spaces": "https://huggingface.co/spaces/lamhieu/lightweight-embeddings",
}
# Available model options for the dropdown
model_options = [
"multilingual-e5-small",
"paraphrase-multilingual-MiniLM-L12-v2",
"bge-m3",
"google/siglip-base-patch16-256-multilingual",
]
with gr.Blocks(title="Lightweight Embeddings", theme="default") as demo:
# Project Info
gr.Markdown(
"""
## π **Lightweight Embeddings**
Welcome to the **Lightweight Embeddings** API, a blazing-fast and flexible service
supporting **text** and **image** embeddings. Below you'll find key project details:
"""
)
gr.Markdown(
f"""
---
### π¦ Project Details
- **Description**: {root_data["description"]}
### π Links
- [Documentation]({root_data["docs"]}) | [GitHub]({root_data["github"]}) | [Demo]({root_data["spaces"]})
### π‘ How to Use
Visit **/docs** for API documentation or try the playground below! π
"""
)
# Embeddings Playground
with gr.Accordion("π¬ Try the Embeddings Playground", open=True):
gr.Markdown(
"Enter your **text** or an **image URL**, pick a model, "
"then click **Generate** to get embeddings from the `/v1/embeddings` API."
)
input_text = gr.Textbox(
label="Input Text or Image URL",
placeholder="Type some text or paste an image URL...",
lines=3,
)
model_dropdown = gr.Dropdown(
choices=model_options,
value=model_options[0],
label="Select Model",
)
generate_btn = gr.Button("Generate Embeddings")
output_json = gr.Textbox(
label="Embeddings API Response",
lines=15,
interactive=False,
)
# Link the button to the inference function
generate_btn.click(
fn=call_embeddings_api,
inputs=[input_text, model_dropdown],
outputs=output_json,
)
return demo
# Create and mount the Gradio Blocks at the root path
main_interface = create_main_interface()
mount_gradio_app(app, main_interface, path="/")
# Startup and shutdown events
@app.on_event("startup")
async def startup_event():
"""
Initialize resources (like model loading) when the application starts.
"""
pass
@app.on_event("shutdown")
async def shutdown_event():
"""
Perform cleanup before the application shuts down.
"""
pass
|