Spaces:
Running
Running
File size: 8,941 Bytes
e8f9d10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# filename: router.py
"""
FastAPI Router for Embeddings Service
This file exposes the EmbeddingsService functionality via a RESTful API
to generate embeddings and rank candidates.
Supported Text Model IDs:
- "multilingual-e5-small"
- "paraphrase-multilingual-MiniLM-L12-v2"
- "bge-m3"
Supported Image Model ID:
- "google/siglip-base-patch16-256-multilingual"
"""
from __future__ import annotations
import logging
from typing import List, Union
from enum import Enum
from fastapi import APIRouter, HTTPException
from pydantic import BaseModel, Field
from .service import ModelConfig, TextModelType, EmbeddingsService
logger = logging.getLogger(__name__)
# Initialize FastAPI router
router = APIRouter(
tags=["v1"],
responses={404: {"description": "Not found"}},
)
class ModelType(str, Enum):
"""
High-level distinction for text vs. image models.
"""
TEXT = "text"
IMAGE = "image"
def detect_model_type(model_id: str) -> ModelType:
"""
Detect whether the provided model ID is for text or image.
Supported text model IDs:
- "multilingual-e5-small"
- "paraphrase-multilingual-MiniLM-L12-v2"
- "bge-m3"
Supported image model ID:
- "google/siglip-base-patch16-256-multilingual"
(or any model containing "siglip" in its identifier).
Args:
model_id: String identifier of the model.
Returns:
ModelType.TEXT if it matches one of the recognized text model IDs,
ModelType.IMAGE if it matches (or contains "siglip").
Raises:
ValueError: If the model_id is not recognized as either text or image.
"""
# Gather all known text model IDs (from TextModelType enum)
text_model_ids = {m.value for m in TextModelType}
# Simple check: if it's in text_model_ids, it's text;
# if 'siglip' is in the model ID, it's recognized as an image model.
if model_id in text_model_ids:
return ModelType.TEXT
elif "siglip" in model_id.lower():
return ModelType.IMAGE
error_msg = (
f"Unsupported model ID: '{model_id}'.\n"
"Valid text model IDs are: "
"'multilingual-e5-small', 'paraphrase-multilingual-MiniLM-L12-v2', 'bge-m3'.\n"
"Valid image model ID contains 'siglip', for example: 'google/siglip-base-patch16-256-multilingual'."
)
raise ValueError(error_msg)
# Pydantic Models for request/response
class EmbeddingRequest(BaseModel):
"""
Request body for embedding creation.
Model IDs (text):
- "multilingual-e5-small"
- "paraphrase-multilingual-MiniLM-L12-v2"
- "bge-m3"
Model ID (image):
- "google/siglip-base-patch16-256-multilingual"
"""
model: str = Field(
default=TextModelType.MULTILINGUAL_E5_SMALL.value,
description=(
"Model ID to use. Possible text models include: 'multilingual-e5-small', "
"'paraphrase-multilingual-MiniLM-L12-v2', 'bge-m3'. "
"For images, you can use: 'google/siglip-base-patch16-256-multilingual' "
"or any ID containing 'siglip'."
),
)
input: Union[str, List[str]] = Field(
...,
description=(
"Input text(s) or image path(s)/URL(s). "
"Accepts a single string or a list of strings."
),
)
class RankRequest(BaseModel):
"""
Request body for ranking candidates against queries.
Model IDs (text):
- "multilingual-e5-small"
- "paraphrase-multilingual-MiniLM-L12-v2"
- "bge-m3"
Model ID (image):
- "google/siglip-base-patch16-256-multilingual"
"""
model: str = Field(
default=TextModelType.MULTILINGUAL_E5_SMALL.value,
description=(
"Model ID to use for the queries. Supported text models: "
"'multilingual-e5-small', 'paraphrase-multilingual-MiniLM-L12-v2', 'bge-m3'. "
"For image queries, use an ID containing 'siglip' such as 'google/siglip-base-patch16-256-multilingual'."
),
)
queries: Union[str, List[str]] = Field(
...,
description=(
"Query input(s): can be text(s) or image path(s)/URL(s). "
"If using an image model, ensure your inputs reference valid image paths or URLs."
),
)
candidates: List[str] = Field(
...,
description=(
"List of candidate texts to rank against the given queries. "
"Currently, all candidates must be text."
),
)
class EmbeddingResponse(BaseModel):
"""
Response structure for embedding creation.
"""
object: str = "list"
data: List[dict]
model: str
usage: dict
class RankResponse(BaseModel):
"""
Response structure for ranking results.
"""
probabilities: List[List[float]]
cosine_similarities: List[List[float]]
# Initialize the service with default configuration
service_config = ModelConfig()
embeddings_service = EmbeddingsService(config=service_config)
@router.post("/embeddings", response_model=EmbeddingResponse, tags=["embeddings"])
async def create_embeddings(request: EmbeddingRequest):
"""
Generate embeddings for the provided input text(s) or image(s).
Supported Model IDs for text:
- "multilingual-e5-small"
- "paraphrase-multilingual-MiniLM-L12-v2"
- "bge-m3"
Supported Model ID for image:
- "google/siglip-base-patch16-256-multilingual"
Steps:
1. Detects model type (text or image) based on the model ID.
2. Adjusts the service configuration accordingly.
3. Produces embeddings via the EmbeddingsService.
4. Returns embedding vectors along with usage information.
Raises:
HTTPException: For any errors during model detection or embedding generation.
"""
try:
modality = detect_model_type(request.model)
# Adjust global config based on the detected modality
if modality == ModelType.TEXT:
service_config.text_model_type = TextModelType(request.model)
else:
service_config.image_model_id = request.model
# Generate embeddings asynchronously
embeddings = await embeddings_service.generate_embeddings(
input_data=request.input, modality=modality.value
)
# Estimate tokens only if it's text
total_tokens = 0
if modality == ModelType.TEXT:
total_tokens = embeddings_service.estimate_tokens(request.input)
return {
"object": "list",
"data": [
{
"object": "embedding",
"index": idx,
"embedding": emb.tolist(),
}
for idx, emb in enumerate(embeddings)
],
"model": request.model,
"usage": {
"prompt_tokens": total_tokens,
"total_tokens": total_tokens,
},
}
except Exception as e:
error_msg = (
"Failed to generate embeddings. Please verify your model ID, input data, and server logs.\n"
f"Error Details: {str(e)}"
)
logger.error(error_msg)
raise HTTPException(status_code=500, detail=error_msg)
@router.post("/rank", response_model=RankResponse, tags=["rank"])
async def rank_candidates(request: RankRequest):
"""
Rank the given candidate texts against the provided queries.
Supported Model IDs for text queries:
- "multilingual-e5-small"
- "paraphrase-multilingual-MiniLM-L12-v2"
- "bge-m3"
Supported Model ID for image queries:
- "google/siglip-base-patch16-256-multilingual"
Steps:
1. Detects model type (text or image) based on the query model ID.
2. Adjusts the service configuration accordingly.
3. Generates embeddings for the queries (text or image).
4. Generates embeddings for the candidates (always text).
5. Computes cosine similarities and returns softmax-normalized probabilities.
Raises:
HTTPException: For any errors during model detection or ranking.
"""
try:
modality = detect_model_type(request.model)
# Adjust global config based on the detected modality
if modality == ModelType.TEXT:
service_config.text_model_type = TextModelType(request.model)
else:
service_config.image_model_id = request.model
# Perform the ranking
results = await embeddings_service.rank(
queries=request.queries,
candidates=request.candidates,
modality=modality.value,
)
return results
except Exception as e:
error_msg = (
"Failed to rank candidates. Please verify your model ID, input data, and server logs.\n"
f"Error Details: {str(e)}"
)
logger.error(error_msg)
raise HTTPException(status_code=500, detail=error_msg)
|