Spaces:
Running
Running
File size: 8,102 Bytes
e8f9d10 65c747d e8f9d10 65c747d e8f9d10 26238e1 e8f9d10 26238e1 e8f9d10 de24ee4 e8f9d10 65c747d e8f9d10 86d6248 e8f9d10 86d6248 e8f9d10 86d6248 e8f9d10 86d6248 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 86d6248 073aa83 86d6248 073aa83 e8f9d10 86d6248 e8f9d10 86d6248 e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 86d6248 9001620 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 86d6248 e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 86d6248 9001620 86d6248 e8f9d10 65c747d e8f9d10 65c747d 86d6248 073aa83 86d6248 073aa83 86d6248 073aa83 86d6248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
"""
FastAPI Router for Embeddings Service (Revised & Simplified)
Exposes the EmbeddingsService methods via a RESTful API.
Supported Text Model IDs:
- "multilingual-e5-small"
- "multilingual-e5-base"
- "multilingual-e5-large"
- "snowflake-arctic-embed-l-v2.0"
- "paraphrase-multilingual-MiniLM-L12-v2"
- "paraphrase-multilingual-mpnet-base-v2"
- "bge-m3"
- "gte-multilingual-base"
Supported Image Model IDs:
- "siglip-base-patch16-256-multilingual"
"""
from __future__ import annotations
import logging
import os
from typing import Dict, Any, List, Union
from enum import Enum
from datetime import datetime
from fastapi import APIRouter, BackgroundTasks, HTTPException
from pydantic import BaseModel, Field
from .analytics import Analytics
from .service import (
ModelConfig,
TextModelType,
ImageModelType,
EmbeddingsService,
)
logger = logging.getLogger(__name__)
router = APIRouter(
tags=["v1"],
responses={404: {"description": "Not found"}},
)
class ModelKind(str, Enum):
TEXT = "text"
IMAGE = "image"
def detect_model_kind(model_id: str) -> ModelKind:
"""
Detect whether model_id is for a text or an image model.
Raises ValueError if unrecognized.
"""
if model_id in [m.value for m in TextModelType]:
return ModelKind.TEXT
elif model_id in [m.value for m in ImageModelType]:
return ModelKind.IMAGE
else:
raise ValueError(
f"Unrecognized model ID: {model_id}.\n"
f"Valid text: {[m.value for m in TextModelType]}\n"
f"Valid image: {[m.value for m in ImageModelType]}"
)
class EmbeddingRequest(BaseModel):
"""
Input to /v1/embeddings
"""
model: str = Field(
default=TextModelType.MULTILINGUAL_E5_SMALL.value,
description=(
"Which model ID to use? "
"Text: ['multilingual-e5-small', 'multilingual-e5-base', 'multilingual-e5-large', 'snowflake-arctic-embed-l-v2.0', 'paraphrase-multilingual-MiniLM-L12-v2', 'paraphrase-multilingual-mpnet-base-v2', 'bge-m3']. "
"Image: ['siglip-base-patch16-256-multilingual']."
),
)
input: Union[str, List[str]] = Field(
..., description="Text(s) or Image URL(s)/path(s)."
)
class RankRequest(BaseModel):
"""
Input to /v1/rank
"""
model: str = Field(
default=TextModelType.MULTILINGUAL_E5_SMALL.value,
description=(
"Model ID for the queries. "
"Text or Image model, e.g. 'siglip-base-patch16-256-multilingual' for images."
),
)
queries: Union[str, List[str]] = Field(
..., description="Query text or image(s) depending on the model type."
)
candidates: List[str] = Field(
..., description="Candidate texts to rank. Must be text."
)
class EmbeddingResponse(BaseModel):
"""
Response of /v1/embeddings
"""
object: str
data: List[dict]
model: str
usage: dict
class RankResponse(BaseModel):
"""
Response of /v1/rank
"""
probabilities: List[List[float]]
cosine_similarities: List[List[float]]
class StatsBucket(BaseModel):
"""Helper model for daily/weekly/monthly/yearly stats"""
total: Dict[str, int]
daily: Dict[str, int]
weekly: Dict[str, int]
monthly: Dict[str, int]
yearly: Dict[str, int]
class StatsResponse(BaseModel):
"""Analytics stats response model, including both access and token counts"""
access: StatsBucket
tokens: StatsBucket
service_config = ModelConfig()
embeddings_service = EmbeddingsService(config=service_config)
analytics = Analytics(
redis_url=os.environ.get("REDIS_URL", "redis://localhost:6379/0"), sync_interval=60
)
@router.post("/embeddings", response_model=EmbeddingResponse, tags=["embeddings"])
async def create_embeddings(
request: EmbeddingRequest, background_tasks: BackgroundTasks
):
"""
Generates embeddings for the given input (text or image).
"""
try:
# 1) Determine if it's text or image
mkind = detect_model_kind(request.model)
# 2) Update global service config so it uses the correct model
if mkind == ModelKind.TEXT:
service_config.text_model_type = TextModelType(request.model)
else:
service_config.image_model_type = ImageModelType(request.model)
# 3) Generate
embeddings = await embeddings_service.generate_embeddings(
input_data=request.input, modality=mkind.value
)
# 4) Estimate tokens for text only
total_tokens = 0
if mkind == ModelKind.TEXT:
total_tokens = embeddings_service.estimate_tokens(request.input)
resp = {
"object": "list",
"data": [],
"model": request.model,
"usage": {
"prompt_tokens": total_tokens,
"total_tokens": total_tokens,
},
}
background_tasks.add_task(
analytics.access, request.model, resp["usage"]["total_tokens"]
)
for idx, emb in enumerate(embeddings):
resp["data"].append(
{
"object": "embedding",
"index": idx,
"embedding": emb.tolist(),
}
)
return resp
except Exception as e:
msg = (
"Failed to generate embeddings. Check model ID, inputs, etc.\n"
f"Details: {str(e)}"
)
logger.error(msg)
raise HTTPException(status_code=500, detail=msg)
@router.post("/rank", response_model=RankResponse, tags=["rank"])
async def rank_candidates(request: RankRequest, background_tasks: BackgroundTasks):
"""
Ranks candidate texts against the given queries (which can be text or image).
"""
try:
mkind = detect_model_kind(request.model)
if mkind == ModelKind.TEXT:
service_config.text_model_type = TextModelType(request.model)
else:
service_config.image_model_type = ImageModelType(request.model)
results = await embeddings_service.rank(
queries=request.queries,
candidates=request.candidates,
modality=mkind.value,
)
background_tasks.add_task(
analytics.access, request.model, results["usage"]["total_tokens"]
)
return results
except Exception as e:
msg = (
"Failed to rank candidates. Check model ID, inputs, etc.\n"
f"Details: {str(e)}"
)
logger.error(msg)
raise HTTPException(status_code=500, detail=msg)
@router.get("/stats", response_model=StatsResponse, tags=["stats"])
async def get_stats():
"""Get usage statistics for all models, including access and tokens."""
try:
day_key = datetime.utcnow().strftime("%Y-%m-%d")
week_key = f"{datetime.utcnow().year}-W{datetime.utcnow().strftime('%U')}"
month_key = datetime.utcnow().strftime("%Y-%m")
year_key = datetime.utcnow().strftime("%Y")
stats_data = await analytics.stats() # { "access": {...}, "tokens": {...} }
return {
"access": {
"total": stats_data["access"].get("total", {}),
"daily": stats_data["access"].get(day_key, {}),
"weekly": stats_data["access"].get(week_key, {}),
"monthly": stats_data["access"].get(month_key, {}),
"yearly": stats_data["access"].get(year_key, {}),
},
"tokens": {
"total": stats_data["tokens"].get("total", {}),
"daily": stats_data["tokens"].get(day_key, {}),
"weekly": stats_data["tokens"].get(week_key, {}),
"monthly": stats_data["tokens"].get(month_key, {}),
"yearly": stats_data["tokens"].get(year_key, {}),
},
}
except Exception as e:
msg = f"Failed to fetch analytics stats: {str(e)}"
logger.error(msg)
raise HTTPException(status_code=500, detail=msg)
|