Spaces:
Running
Running
File size: 5,728 Bytes
e8f9d10 65c747d e8f9d10 65c747d e8f9d10 26238e1 e8f9d10 26238e1 e8f9d10 de24ee4 e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
"""
FastAPI Router for Embeddings Service (Revised & Simplified)
Exposes the EmbeddingsService methods via a RESTful API.
Supported Text Model IDs:
- "multilingual-e5-small"
- "multilingual-e5-base"
- "multilingual-e5-large"
- "snowflake-arctic-embed-l-v2.0"
- "paraphrase-multilingual-MiniLM-L12-v2"
- "paraphrase-multilingual-mpnet-base-v2"
- "bge-m3"
- "gte-multilingual-base"
Supported Image Model IDs:
- "siglip-base-patch16-256-multilingual"
"""
from __future__ import annotations
import logging
from typing import List, Union
from enum import Enum
from fastapi import APIRouter, HTTPException
from pydantic import BaseModel, Field
from .service import (
ModelConfig,
TextModelType,
ImageModelType,
EmbeddingsService,
)
logger = logging.getLogger(__name__)
router = APIRouter(
tags=["v1"],
responses={404: {"description": "Not found"}},
)
class ModelKind(str, Enum):
TEXT = "text"
IMAGE = "image"
def detect_model_kind(model_id: str) -> ModelKind:
"""
Detect whether model_id is for a text or an image model.
Raises ValueError if unrecognized.
"""
if model_id in [m.value for m in TextModelType]:
return ModelKind.TEXT
elif model_id in [m.value for m in ImageModelType]:
return ModelKind.IMAGE
else:
raise ValueError(
f"Unrecognized model ID: {model_id}.\n"
f"Valid text: {[m.value for m in TextModelType]}\n"
f"Valid image: {[m.value for m in ImageModelType]}"
)
class EmbeddingRequest(BaseModel):
"""
Input to /v1/embeddings
"""
model: str = Field(
default=TextModelType.MULTILINGUAL_E5_SMALL.value,
description=(
"Which model ID to use? "
"Text: ['multilingual-e5-small', 'multilingual-e5-base', 'multilingual-e5-large', 'snowflake-arctic-embed-l-v2.0', 'paraphrase-multilingual-MiniLM-L12-v2', 'paraphrase-multilingual-mpnet-base-v2', 'bge-m3']. "
"Image: ['siglip-base-patch16-256-multilingual']."
),
)
input: Union[str, List[str]] = Field(
..., description="Text(s) or Image URL(s)/path(s)."
)
class RankRequest(BaseModel):
"""
Input to /v1/rank
"""
model: str = Field(
default=TextModelType.MULTILINGUAL_E5_SMALL.value,
description=(
"Model ID for the queries. "
"Text or Image model, e.g. 'siglip-base-patch16-256-multilingual' for images."
),
)
queries: Union[str, List[str]] = Field(
..., description="Query text or image(s) depending on the model type."
)
candidates: List[str] = Field(
..., description="Candidate texts to rank. Must be text."
)
class EmbeddingResponse(BaseModel):
"""
Response of /v1/embeddings
"""
object: str
data: List[dict]
model: str
usage: dict
class RankResponse(BaseModel):
"""
Response of /v1/rank
"""
probabilities: List[List[float]]
cosine_similarities: List[List[float]]
service_config = ModelConfig()
embeddings_service = EmbeddingsService(config=service_config)
@router.post("/embeddings", response_model=EmbeddingResponse, tags=["embeddings"])
async def create_embeddings(request: EmbeddingRequest):
"""
Generates embeddings for the given input (text or image).
"""
try:
# 1) Determine if it's text or image
mkind = detect_model_kind(request.model)
# 2) Update global service config so it uses the correct model
if mkind == ModelKind.TEXT:
service_config.text_model_type = TextModelType(request.model)
else:
service_config.image_model_type = ImageModelType(request.model)
# 3) Generate
embeddings = await embeddings_service.generate_embeddings(
input_data=request.input, modality=mkind.value
)
# 4) Estimate tokens for text only
total_tokens = 0
if mkind == ModelKind.TEXT:
total_tokens = embeddings_service.estimate_tokens(request.input)
resp = {
"object": "list",
"data": [],
"model": request.model,
"usage": {
"prompt_tokens": total_tokens,
"total_tokens": total_tokens,
},
}
for idx, emb in enumerate(embeddings):
resp["data"].append(
{
"object": "embedding",
"index": idx,
"embedding": emb.tolist(),
}
)
return resp
except Exception as e:
msg = (
"Failed to generate embeddings. Check model ID, inputs, etc.\n"
f"Details: {str(e)}"
)
logger.error(msg)
raise HTTPException(status_code=500, detail=msg)
@router.post("/rank", response_model=RankResponse, tags=["rank"])
async def rank_candidates(request: RankRequest):
"""
Ranks candidate texts against the given queries (which can be text or image).
"""
try:
mkind = detect_model_kind(request.model)
if mkind == ModelKind.TEXT:
service_config.text_model_type = TextModelType(request.model)
else:
service_config.image_model_type = ImageModelType(request.model)
results = await embeddings_service.rank(
queries=request.queries,
candidates=request.candidates,
modality=mkind.value,
)
return results
except Exception as e:
msg = (
"Failed to rank candidates. Check model ID, inputs, etc.\n"
f"Details: {str(e)}"
)
logger.error(msg)
raise HTTPException(status_code=500, detail=msg)
|