Spaces:
Running
Running
fix: update model encoding flow
Browse files- lightweight_embeddings/router.py +10 -47
- lightweight_embeddings/service.py +62 -14
lightweight_embeddings/router.py
CHANGED
@@ -21,8 +21,7 @@ from __future__ import annotations
|
|
21 |
|
22 |
import logging
|
23 |
import os
|
24 |
-
from typing import Dict,
|
25 |
-
from enum import Enum
|
26 |
from datetime import datetime
|
27 |
|
28 |
from fastapi import APIRouter, BackgroundTasks, HTTPException
|
@@ -32,8 +31,9 @@ from .analytics import Analytics
|
|
32 |
from .service import (
|
33 |
ModelConfig,
|
34 |
TextModelType,
|
35 |
-
ImageModelType,
|
36 |
EmbeddingsService,
|
|
|
|
|
37 |
)
|
38 |
|
39 |
logger = logging.getLogger(__name__)
|
@@ -44,28 +44,6 @@ router = APIRouter(
|
|
44 |
)
|
45 |
|
46 |
|
47 |
-
class ModelKind(str, Enum):
|
48 |
-
TEXT = "text"
|
49 |
-
IMAGE = "image"
|
50 |
-
|
51 |
-
|
52 |
-
def detect_model_kind(model_id: str) -> ModelKind:
|
53 |
-
"""
|
54 |
-
Detect whether model_id is for a text or an image model.
|
55 |
-
Raises ValueError if unrecognized.
|
56 |
-
"""
|
57 |
-
if model_id in [m.value for m in TextModelType]:
|
58 |
-
return ModelKind.TEXT
|
59 |
-
elif model_id in [m.value for m in ImageModelType]:
|
60 |
-
return ModelKind.IMAGE
|
61 |
-
else:
|
62 |
-
raise ValueError(
|
63 |
-
f"Unrecognized model ID: {model_id}.\n"
|
64 |
-
f"Valid text: {[m.value for m in TextModelType]}\n"
|
65 |
-
f"Valid image: {[m.value for m in ImageModelType]}"
|
66 |
-
)
|
67 |
-
|
68 |
-
|
69 |
class EmbeddingRequest(BaseModel):
|
70 |
"""
|
71 |
Input to /v1/embeddings
|
@@ -147,7 +125,7 @@ embeddings_service = EmbeddingsService(config=service_config)
|
|
147 |
analytics = Analytics(
|
148 |
url=os.environ.get("REDIS_URL", "redis://localhost:6379/0"),
|
149 |
token=os.environ.get("REDIS_TOKEN", "***"),
|
150 |
-
sync_interval=5 * 60,
|
151 |
)
|
152 |
|
153 |
|
@@ -159,23 +137,15 @@ async def create_embeddings(
|
|
159 |
Generates embeddings for the given input (text or image).
|
160 |
"""
|
161 |
try:
|
162 |
-
|
163 |
-
mkind = detect_model_kind(request.model)
|
164 |
-
|
165 |
-
# 2) Update global service config so it uses the correct model
|
166 |
-
if mkind == ModelKind.TEXT:
|
167 |
-
service_config.text_model_type = TextModelType(request.model)
|
168 |
-
else:
|
169 |
-
service_config.image_model_type = ImageModelType(request.model)
|
170 |
-
|
171 |
-
# 3) Generate
|
172 |
embeddings = await embeddings_service.generate_embeddings(
|
173 |
-
|
|
|
174 |
)
|
175 |
|
176 |
-
#
|
177 |
total_tokens = 0
|
178 |
-
if
|
179 |
total_tokens = embeddings_service.estimate_tokens(request.input)
|
180 |
|
181 |
resp = {
|
@@ -218,17 +188,10 @@ async def rank_candidates(request: RankRequest, background_tasks: BackgroundTask
|
|
218 |
Ranks candidate texts against the given queries (which can be text or image).
|
219 |
"""
|
220 |
try:
|
221 |
-
mkind = detect_model_kind(request.model)
|
222 |
-
|
223 |
-
if mkind == ModelKind.TEXT:
|
224 |
-
service_config.text_model_type = TextModelType(request.model)
|
225 |
-
else:
|
226 |
-
service_config.image_model_type = ImageModelType(request.model)
|
227 |
-
|
228 |
results = await embeddings_service.rank(
|
|
|
229 |
queries=request.queries,
|
230 |
candidates=request.candidates,
|
231 |
-
modality=mkind.value,
|
232 |
)
|
233 |
|
234 |
background_tasks.add_task(
|
|
|
21 |
|
22 |
import logging
|
23 |
import os
|
24 |
+
from typing import Dict, List, Union
|
|
|
25 |
from datetime import datetime
|
26 |
|
27 |
from fastapi import APIRouter, BackgroundTasks, HTTPException
|
|
|
31 |
from .service import (
|
32 |
ModelConfig,
|
33 |
TextModelType,
|
|
|
34 |
EmbeddingsService,
|
35 |
+
ModelKind,
|
36 |
+
detect_model_kind,
|
37 |
)
|
38 |
|
39 |
logger = logging.getLogger(__name__)
|
|
|
44 |
)
|
45 |
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
class EmbeddingRequest(BaseModel):
|
48 |
"""
|
49 |
Input to /v1/embeddings
|
|
|
125 |
analytics = Analytics(
|
126 |
url=os.environ.get("REDIS_URL", "redis://localhost:6379/0"),
|
127 |
token=os.environ.get("REDIS_TOKEN", "***"),
|
128 |
+
sync_interval=5 * 60, # 5 minutes
|
129 |
)
|
130 |
|
131 |
|
|
|
137 |
Generates embeddings for the given input (text or image).
|
138 |
"""
|
139 |
try:
|
140 |
+
modality = detect_model_kind(request.model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
embeddings = await embeddings_service.generate_embeddings(
|
142 |
+
inputs=request.input,
|
143 |
+
model=request.model,
|
144 |
)
|
145 |
|
146 |
+
# Estimate tokens for text only
|
147 |
total_tokens = 0
|
148 |
+
if modality == ModelKind.TEXT:
|
149 |
total_tokens = embeddings_service.estimate_tokens(request.input)
|
150 |
|
151 |
resp = {
|
|
|
188 |
Ranks candidate texts against the given queries (which can be text or image).
|
189 |
"""
|
190 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
results = await embeddings_service.rank(
|
192 |
+
model=request.model,
|
193 |
queries=request.queries,
|
194 |
candidates=request.candidates,
|
|
|
195 |
)
|
196 |
|
197 |
background_tasks.add_task(
|
lightweight_embeddings/service.py
CHANGED
@@ -28,7 +28,7 @@ from __future__ import annotations
|
|
28 |
|
29 |
import logging
|
30 |
from enum import Enum
|
31 |
-
from typing import List, Union,
|
32 |
from dataclasses import dataclass
|
33 |
from pathlib import Path
|
34 |
from io import BytesIO
|
@@ -149,6 +149,28 @@ class ModelConfig:
|
|
149 |
return image_configs[self.image_model_type]
|
150 |
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
class EmbeddingsService:
|
153 |
"""
|
154 |
Service for generating text/image embeddings and performing ranking.
|
@@ -264,7 +286,11 @@ class EmbeddingsService:
|
|
264 |
except Exception as e:
|
265 |
raise ValueError(f"Error processing image '{path_or_url}': {str(e)}") from e
|
266 |
|
267 |
-
def _generate_text_embeddings(
|
|
|
|
|
|
|
|
|
268 |
"""
|
269 |
Generate text embeddings using the currently configured text model
|
270 |
with an LRU cache for single-text requests.
|
@@ -274,7 +300,7 @@ class EmbeddingsService:
|
|
274 |
key = md5(texts[0].encode("utf-8")).hexdigest()
|
275 |
if key in self.lru_cache:
|
276 |
return self.lru_cache[key]
|
277 |
-
model = self.text_models[
|
278 |
embeddings = model.encode(texts)
|
279 |
|
280 |
if len(texts) == 1:
|
@@ -287,6 +313,7 @@ class EmbeddingsService:
|
|
287 |
|
288 |
def _generate_image_embeddings(
|
289 |
self,
|
|
|
290 |
images: Union[str, List[str]],
|
291 |
batch_size: Optional[int] = None,
|
292 |
) -> np.ndarray:
|
@@ -295,7 +322,7 @@ class EmbeddingsService:
|
|
295 |
If `batch_size` is None, all images are processed at once.
|
296 |
"""
|
297 |
try:
|
298 |
-
model = self.image_models[
|
299 |
|
300 |
# Single image
|
301 |
if isinstance(images, str):
|
@@ -341,36 +368,57 @@ class EmbeddingsService:
|
|
341 |
|
342 |
async def generate_embeddings(
|
343 |
self,
|
344 |
-
|
345 |
-
|
346 |
batch_size: Optional[int] = None,
|
347 |
) -> np.ndarray:
|
348 |
"""
|
349 |
Asynchronously generate embeddings for text or image.
|
350 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
self._validate_modality(modality)
|
352 |
-
if modality == "text":
|
353 |
-
text_list = self._validate_text_input(
|
354 |
-
return self._generate_text_embeddings(text_list)
|
355 |
-
|
356 |
-
return self._generate_image_embeddings(
|
|
|
|
|
357 |
|
358 |
async def rank(
|
359 |
self,
|
|
|
360 |
queries: Union[str, List[str]],
|
361 |
candidates: List[str],
|
362 |
-
modality: Literal["text", "image"],
|
363 |
batch_size: Optional[int] = None,
|
364 |
) -> Dict[str, Any]:
|
365 |
"""
|
366 |
Rank candidates (always text) against the queries, which may be text or image.
|
367 |
Returns dict of { probabilities, cosine_similarities, usage }.
|
368 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
|
370 |
# 1) Generate embeddings for queries
|
371 |
-
query_embeds = await self.generate_embeddings(
|
|
|
|
|
372 |
# 2) Generate embeddings for text candidates
|
373 |
-
candidate_embeds = await self.generate_embeddings(
|
|
|
|
|
374 |
|
375 |
# 3) Compute cosine similarity
|
376 |
sim_matrix = self.cosine_similarity(query_embeds, candidate_embeds)
|
|
|
28 |
|
29 |
import logging
|
30 |
from enum import Enum
|
31 |
+
from typing import List, Union, Dict, Optional, NamedTuple, Any
|
32 |
from dataclasses import dataclass
|
33 |
from pathlib import Path
|
34 |
from io import BytesIO
|
|
|
149 |
return image_configs[self.image_model_type]
|
150 |
|
151 |
|
152 |
+
class ModelKind(str, Enum):
|
153 |
+
TEXT = "text"
|
154 |
+
IMAGE = "image"
|
155 |
+
|
156 |
+
|
157 |
+
def detect_model_kind(model_id: str) -> ModelKind:
|
158 |
+
"""
|
159 |
+
Detect whether model_id is for a text or an image model.
|
160 |
+
Raises ValueError if unrecognized.
|
161 |
+
"""
|
162 |
+
if model_id in [m.value for m in TextModelType]:
|
163 |
+
return ModelKind.TEXT
|
164 |
+
elif model_id in [m.value for m in ImageModelType]:
|
165 |
+
return ModelKind.IMAGE
|
166 |
+
else:
|
167 |
+
raise ValueError(
|
168 |
+
f"Unrecognized model ID: {model_id}.\n"
|
169 |
+
f"Valid text: {[m.value for m in TextModelType]}\n"
|
170 |
+
f"Valid image: {[m.value for m in ImageModelType]}"
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
class EmbeddingsService:
|
175 |
"""
|
176 |
Service for generating text/image embeddings and performing ranking.
|
|
|
286 |
except Exception as e:
|
287 |
raise ValueError(f"Error processing image '{path_or_url}': {str(e)}") from e
|
288 |
|
289 |
+
def _generate_text_embeddings(
|
290 |
+
self,
|
291 |
+
model_id: TextModelType,
|
292 |
+
texts: List[str],
|
293 |
+
) -> np.ndarray:
|
294 |
"""
|
295 |
Generate text embeddings using the currently configured text model
|
296 |
with an LRU cache for single-text requests.
|
|
|
300 |
key = md5(texts[0].encode("utf-8")).hexdigest()
|
301 |
if key in self.lru_cache:
|
302 |
return self.lru_cache[key]
|
303 |
+
model = self.text_models[model_id]
|
304 |
embeddings = model.encode(texts)
|
305 |
|
306 |
if len(texts) == 1:
|
|
|
313 |
|
314 |
def _generate_image_embeddings(
|
315 |
self,
|
316 |
+
model_id: ImageModelType,
|
317 |
images: Union[str, List[str]],
|
318 |
batch_size: Optional[int] = None,
|
319 |
) -> np.ndarray:
|
|
|
322 |
If `batch_size` is None, all images are processed at once.
|
323 |
"""
|
324 |
try:
|
325 |
+
model = self.image_models[model_id]
|
326 |
|
327 |
# Single image
|
328 |
if isinstance(images, str):
|
|
|
368 |
|
369 |
async def generate_embeddings(
|
370 |
self,
|
371 |
+
model: str,
|
372 |
+
inputs: Union[str, List[str]],
|
373 |
batch_size: Optional[int] = None,
|
374 |
) -> np.ndarray:
|
375 |
"""
|
376 |
Asynchronously generate embeddings for text or image.
|
377 |
"""
|
378 |
+
# Determine if it's text or image
|
379 |
+
modality = detect_model_kind(model)
|
380 |
+
model_id = (
|
381 |
+
TextModelType(model)
|
382 |
+
if modality == ModelKind.TEXT
|
383 |
+
else ImageModelType(model)
|
384 |
+
)
|
385 |
+
|
386 |
self._validate_modality(modality)
|
387 |
+
if modality == "text" and isinstance(model_id, TextModelType):
|
388 |
+
text_list = self._validate_text_input(inputs)
|
389 |
+
return self._generate_text_embeddings(model_id=model_id, texts=text_list)
|
390 |
+
elif modality == "image" and isinstance(model_id, ImageModelType):
|
391 |
+
return self._generate_image_embeddings(
|
392 |
+
model_id=model_id, images=inputs, batch_size=batch_size
|
393 |
+
)
|
394 |
|
395 |
async def rank(
|
396 |
self,
|
397 |
+
model: str,
|
398 |
queries: Union[str, List[str]],
|
399 |
candidates: List[str],
|
|
|
400 |
batch_size: Optional[int] = None,
|
401 |
) -> Dict[str, Any]:
|
402 |
"""
|
403 |
Rank candidates (always text) against the queries, which may be text or image.
|
404 |
Returns dict of { probabilities, cosine_similarities, usage }.
|
405 |
"""
|
406 |
+
# Determine if it's text or image
|
407 |
+
modality = detect_model_kind(model)
|
408 |
+
model_id = (
|
409 |
+
TextModelType(model)
|
410 |
+
if modality == ModelKind.TEXT
|
411 |
+
else ImageModelType(model)
|
412 |
+
)
|
413 |
|
414 |
# 1) Generate embeddings for queries
|
415 |
+
query_embeds = await self.generate_embeddings(
|
416 |
+
model=model_id, inputs=queries, batch_size=batch_size
|
417 |
+
)
|
418 |
# 2) Generate embeddings for text candidates
|
419 |
+
candidate_embeds = await self.generate_embeddings(
|
420 |
+
model=model_id, inputs=candidates, batch_size=batch_size
|
421 |
+
)
|
422 |
|
423 |
# 3) Compute cosine similarity
|
424 |
sim_matrix = self.cosine_similarity(query_embeds, candidate_embeds)
|