from __future__ import annotations import logging import os from typing import Dict, List, Union from datetime import datetime from fastapi import APIRouter, BackgroundTasks, HTTPException from pydantic import BaseModel, Field from .analytics import Analytics from .service import ( ModelConfig, TextModelType, EmbeddingsService, ModelKind, detect_model_kind, ) logger = logging.getLogger(__name__) router = APIRouter( tags=["v1"], responses={404: {"description": "Not found"}}, ) class EmbeddingRequest(BaseModel): """ Input to /v1/embeddings """ model: str = Field( default=TextModelType.MULTILINGUAL_E5_SMALL.value, description=( "Which model ID to use? " "Text: ['multilingual-e5-small', 'multilingual-e5-base', 'multilingual-e5-large', 'snowflake-arctic-embed-l-v2.0', 'paraphrase-multilingual-MiniLM-L12-v2', 'paraphrase-multilingual-mpnet-base-v2', 'bge-m3']. " "Image: ['siglip-base-patch16-256-multilingual']." ), ) input: Union[str, List[str]] = Field( ..., description="Text(s) or Image URL(s)/path(s)." ) class RankRequest(BaseModel): """ Input to /v1/rank """ model: str = Field( default=TextModelType.MULTILINGUAL_E5_SMALL.value, description=( "Model ID for the queries. " "Text or Image model, e.g. 'siglip-base-patch16-256-multilingual' for images." ), ) queries: Union[str, List[str]] = Field( ..., description="Query text or image(s) depending on the model type." ) candidates: List[str] = Field( ..., description="Candidate texts to rank. Must be text." ) class EmbeddingResponse(BaseModel): """ Response of /v1/embeddings """ object: str data: List[dict] model: str usage: dict class RankResponse(BaseModel): """ Response of /v1/rank """ probabilities: List[List[float]] cosine_similarities: List[List[float]] class StatsBucket(BaseModel): """Helper model for daily/weekly/monthly/yearly stats""" total: Dict[str, int] daily: Dict[str, int] weekly: Dict[str, int] monthly: Dict[str, int] yearly: Dict[str, int] class StatsResponse(BaseModel): """Analytics stats response model, including both access and token counts""" access: StatsBucket tokens: StatsBucket service_config = ModelConfig() embeddings_service = EmbeddingsService(config=service_config) analytics = Analytics( url=os.environ.get("REDIS_URL", "redis://localhost:6379/0"), token=os.environ.get("REDIS_TOKEN", "***"), sync_interval=5 * 60, # 5 minutes ) @router.post("/embeddings", response_model=EmbeddingResponse, tags=["embeddings"]) async def create_embeddings( request: EmbeddingRequest, background_tasks: BackgroundTasks ): """ Generates embeddings for the given input (text or image). """ try: modality = detect_model_kind(request.model) embeddings = await embeddings_service.generate_embeddings( inputs=request.input, model=request.model, ) # Estimate tokens for text only total_tokens = 0 if modality == ModelKind.TEXT: total_tokens = embeddings_service.estimate_tokens(request.input) resp = { "object": "list", "data": [], "model": request.model, "usage": { "prompt_tokens": total_tokens, "total_tokens": total_tokens, }, } for idx, emb in enumerate(embeddings): resp["data"].append( { "object": "embedding", "index": idx, "embedding": emb.tolist(), } ) background_tasks.add_task( analytics.access, request.model, resp["usage"]["total_tokens"] ) return resp except Exception as e: msg = ( "Failed to generate embeddings. Check model ID, inputs, etc.\n" f"Details: {str(e)}" ) logger.error(msg) raise HTTPException(status_code=500, detail=msg) @router.post("/rank", response_model=RankResponse, tags=["rank"]) async def rank_candidates(request: RankRequest, background_tasks: BackgroundTasks): """ Ranks candidate texts against the given queries (which can be text or image). """ try: results = await embeddings_service.rank( model=request.model, queries=request.queries, candidates=request.candidates, ) background_tasks.add_task( analytics.access, request.model, results["usage"]["total_tokens"] ) return results except Exception as e: msg = ( "Failed to rank candidates. Check model ID, inputs, etc.\n" f"Details: {str(e)}" ) logger.error(msg) raise HTTPException(status_code=500, detail=msg) @router.get("/stats", response_model=StatsResponse, tags=["stats"]) async def get_stats(): """Get usage statistics for all models, including access and tokens.""" try: day_key = datetime.utcnow().strftime("%Y-%m-%d") week_key = f"{datetime.utcnow().year}-W{datetime.utcnow().strftime('%U')}" month_key = datetime.utcnow().strftime("%Y-%m") year_key = datetime.utcnow().strftime("%Y") stats_data = await analytics.stats() # { "access": {...}, "tokens": {...} } return { "access": { "total": stats_data["access"].get("total", {}), "daily": stats_data["access"].get(day_key, {}), "weekly": stats_data["access"].get(week_key, {}), "monthly": stats_data["access"].get(month_key, {}), "yearly": stats_data["access"].get(year_key, {}), }, "tokens": { "total": stats_data["tokens"].get("total", {}), "daily": stats_data["tokens"].get(day_key, {}), "weekly": stats_data["tokens"].get(week_key, {}), "monthly": stats_data["tokens"].get(month_key, {}), "yearly": stats_data["tokens"].get(year_key, {}), }, } except Exception as e: msg = f"Failed to fetch analytics stats: {str(e)}" logger.error(msg) raise HTTPException(status_code=500, detail=msg)