import gradio import cv2 #def inference(img, in_bright): # new_img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # in_bright=1 # return new_img #iface = gradio.Interface( # fn=inference, # inputs=['image',gradio.Slider(0,100)], # outputs='image', # title='Change Image', # description='Interface!', # examples=["llama.jpg"]) #iface.launch() import gradio as gr def greet(image, name, is_morning, temperature): salutation = "Good morning" if is_morning else "Good evening" greeting = f"{salutation} {name}. It is {temperature} degrees today" celsius = (temperature - 32) * 5 / 9 # contrast [1.0-3.0] # brightness [0-100] # https://docs.opencv.org/4.x/d3/dc1/tutorial_basic_linear_transform.html in_contrast = 1.0 in_brightness = 50 for y in range(image.shape[0]): for x in range(image.shape[1]): for c in range(image.shape[2]): new_image[y,x,c] = np.clip(in_contrast*image[y,x,c] + in_brightness, 0, 255) return new_image, greeting, round(celsius, 2) demo = gr.Interface( fn=greet, inputs=['image',"text", "checkbox", gr.Slider(0, 100)], outputs=['image',"text", "number"], ) demo.launch()