Spaces:
Running
Running
langdonholmes
commited on
Commit
·
b97a311
1
Parent(s):
e3f8caf
moved some functions to anonymize.py
Browse files- .gitignore +1 -0
- anonymize.py +44 -0
- app.py +2 -25
- spacy_recognizer.py +2 -21
.gitignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
|
2 |
__pycache__/spacy_recognizer.cpython-310.pyc
|
|
|
|
1 |
|
2 |
__pycache__/spacy_recognizer.cpython-310.pyc
|
3 |
+
__pycache__/anonymize.cpython-310.pyc
|
anonymize.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from spacy_recognizer import CustomSpacyRecognizer
|
2 |
+
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
3 |
+
from presidio_anonymizer import AnonymizerEngine
|
4 |
+
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
5 |
+
from presidio_anonymizer.entities import OperatorConfig
|
6 |
+
import pandas as pd
|
7 |
+
from json import JSONEncoder
|
8 |
+
import json
|
9 |
+
import warnings
|
10 |
+
import os
|
11 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
12 |
+
warnings.filterwarnings('ignore')
|
13 |
+
|
14 |
+
def prepare_analyzer(configuration):
|
15 |
+
"""Return AnalyzerEngine."""
|
16 |
+
|
17 |
+
spacy_recognizer = CustomSpacyRecognizer()
|
18 |
+
|
19 |
+
print('Hallej')
|
20 |
+
|
21 |
+
# Create NLP engine based on configuration
|
22 |
+
provider = NlpEngineProvider(nlp_configuration=configuration)
|
23 |
+
nlp_engine = provider.create_engine()
|
24 |
+
|
25 |
+
# add rule-based recognizers
|
26 |
+
registry = RecognizerRegistry()
|
27 |
+
registry.load_predefined_recognizers(nlp_engine=nlp_engine)
|
28 |
+
registry.add_recognizer(spacy_recognizer)
|
29 |
+
|
30 |
+
# remove the nlp engine we passed, to use custom label mappings
|
31 |
+
registry.remove_recognizer("SpacyRecognizer")
|
32 |
+
|
33 |
+
analyzer = AnalyzerEngine(nlp_engine=nlp_engine,
|
34 |
+
registry=registry,
|
35 |
+
supported_languages=["en"])
|
36 |
+
|
37 |
+
return analyzer
|
38 |
+
|
39 |
+
def generate_surrogate(name):
|
40 |
+
"""Return appropriate surrogate name from text string"""
|
41 |
+
if "John" in name:
|
42 |
+
return "Jill"
|
43 |
+
else:
|
44 |
+
return "SURROGATE_NAME"
|
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
|
2 |
"""Streamlit app for Student Name Detection models."""
|
3 |
|
4 |
-
from
|
5 |
-
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
6 |
from presidio_anonymizer import AnonymizerEngine
|
7 |
-
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
8 |
from presidio_anonymizer.entities import OperatorConfig
|
9 |
import pandas as pd
|
10 |
from annotated_text import annotated_text
|
@@ -21,27 +19,13 @@ warnings.filterwarnings('ignore')
|
|
21 |
def analyzer_engine():
|
22 |
"""Return AnalyzerEngine."""
|
23 |
|
24 |
-
spacy_recognizer = CustomSpacyRecognizer()
|
25 |
-
|
26 |
configuration = {
|
27 |
"nlp_engine_name": "spacy",
|
28 |
"models": [
|
29 |
{"lang_code": "en", "model_name": "en_student_name_detector"}],
|
30 |
}
|
31 |
|
32 |
-
|
33 |
-
provider = NlpEngineProvider(nlp_configuration=configuration)
|
34 |
-
nlp_engine = provider.create_engine()
|
35 |
-
|
36 |
-
registry = RecognizerRegistry()
|
37 |
-
# add rule-based recognizers
|
38 |
-
registry.load_predefined_recognizers(nlp_engine=nlp_engine)
|
39 |
-
registry.add_recognizer(spacy_recognizer)
|
40 |
-
# remove the nlp engine we passed, to use custom label mappings
|
41 |
-
registry.remove_recognizer("SpacyRecognizer")
|
42 |
-
|
43 |
-
analyzer = AnalyzerEngine(nlp_engine=nlp_engine,
|
44 |
-
registry=registry, supported_languages=["en"])
|
45 |
|
46 |
return analyzer
|
47 |
|
@@ -60,13 +44,6 @@ def analyze(**kwargs):
|
|
60 |
kwargs["entities"] = None
|
61 |
return analyzer_engine().analyze(**kwargs)
|
62 |
|
63 |
-
def generate_surrogate(name):
|
64 |
-
"""Return appropriate surrogate name from text string"""
|
65 |
-
if "John" in name:
|
66 |
-
return "Jill"
|
67 |
-
else:
|
68 |
-
return "SURROGATE_NAME"
|
69 |
-
|
70 |
def anonymize(text, analyze_results):
|
71 |
"""Anonymize identified input using Presidio Anonymizer."""
|
72 |
if not text:
|
|
|
1 |
|
2 |
"""Streamlit app for Student Name Detection models."""
|
3 |
|
4 |
+
from anonymize import prepare_analyzer, generate_surrogate
|
|
|
5 |
from presidio_anonymizer import AnonymizerEngine
|
|
|
6 |
from presidio_anonymizer.entities import OperatorConfig
|
7 |
import pandas as pd
|
8 |
from annotated_text import annotated_text
|
|
|
19 |
def analyzer_engine():
|
20 |
"""Return AnalyzerEngine."""
|
21 |
|
|
|
|
|
22 |
configuration = {
|
23 |
"nlp_engine_name": "spacy",
|
24 |
"models": [
|
25 |
{"lang_code": "en", "model_name": "en_student_name_detector"}],
|
26 |
}
|
27 |
|
28 |
+
analyzer = prepare_analyzer(configuration)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
return analyzer
|
31 |
|
|
|
44 |
kwargs["entities"] = None
|
45 |
return analyzer_engine().analyze(**kwargs)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
def anonymize(text, analyze_results):
|
48 |
"""Anonymize identified input using Presidio Anonymizer."""
|
49 |
if not text:
|
spacy_recognizer.py
CHANGED
@@ -11,41 +11,22 @@ from presidio_analyzer.predefined_recognizers.spacy_recognizer import SpacyRecog
|
|
11 |
|
12 |
logger = logging.getLogger("presidio-analyzer")
|
13 |
|
14 |
-
|
15 |
class CustomSpacyRecognizer(LocalRecognizer):
|
16 |
-
|
17 |
ENTITIES = [
|
18 |
-
"LOCATION",
|
19 |
-
"PERSON",
|
20 |
"STUDENT",
|
21 |
-
"NRP",
|
22 |
-
"ORGANIZATION",
|
23 |
-
"DATE_TIME",
|
24 |
]
|
25 |
|
26 |
-
DEFAULT_EXPLANATION = "Identified as {} by
|
27 |
|
28 |
CHECK_LABEL_GROUPS = [
|
29 |
-
({"LOCATION"}, {"LOC", "LOCATION", "STREET_ADDRESS", "COORDINATE"}),
|
30 |
-
({"PERSON"}, {"PER", "PERSON"}),
|
31 |
({"STUDENT"}, {"STUDENT"}),
|
32 |
-
({"NRP"}, {"NORP", "NRP"}),
|
33 |
-
({"ORGANIZATION"}, {"ORG"}),
|
34 |
-
({"DATE_TIME"}, {"DATE_TIME"}),
|
35 |
]
|
36 |
|
37 |
MODEL_LANGUAGES = {
|
38 |
"en": "langdonholmes/en_student_name_detector",
|
39 |
}
|
40 |
|
41 |
-
PRESIDIO_EQUIVALENCES = {
|
42 |
-
"PER": "PERSON",
|
43 |
-
"LOC": "LOCATION",
|
44 |
-
"ORG": "ORGANIZATION",
|
45 |
-
"NROP": "NRP",
|
46 |
-
"DATE_TIME": "DATE_TIME",
|
47 |
-
}
|
48 |
-
|
49 |
def __init__(
|
50 |
self,
|
51 |
supported_language: str = "en",
|
|
|
11 |
|
12 |
logger = logging.getLogger("presidio-analyzer")
|
13 |
|
|
|
14 |
class CustomSpacyRecognizer(LocalRecognizer):
|
15 |
+
|
16 |
ENTITIES = [
|
|
|
|
|
17 |
"STUDENT",
|
|
|
|
|
|
|
18 |
]
|
19 |
|
20 |
+
DEFAULT_EXPLANATION = "Identified as {} by a Student Name Detection Model"
|
21 |
|
22 |
CHECK_LABEL_GROUPS = [
|
|
|
|
|
23 |
({"STUDENT"}, {"STUDENT"}),
|
|
|
|
|
|
|
24 |
]
|
25 |
|
26 |
MODEL_LANGUAGES = {
|
27 |
"en": "langdonholmes/en_student_name_detector",
|
28 |
}
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def __init__(
|
31 |
self,
|
32 |
supported_language: str = "en",
|