File size: 8,701 Bytes
b163a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b6c7d4
 
b163a23
8b6c7d4
b163a23
 
 
 
 
 
 
8b6c7d4
b163a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b6c7d4
b163a23
 
 
 
 
 
 
8b6c7d4
b163a23
 
 
 
 
 
 
8b6c7d4
b163a23
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import gradio as gr
from gradio.components import Textbox, Button, Slider, Checkbox
from AinaTheme import theme
from urllib.error import HTTPError

from rag import RAG
from utils import setup

MAX_NEW_TOKENS = 700
SHOW_MODEL_PARAMETERS_IN_UI = os.environ.get("SHOW_MODEL_PARAMETERS_IN_UI", default="True") == "True"

setup()


rag = RAG(
    hf_token=os.getenv("HF_TOKEN"),
    embeddings_model=os.getenv("EMBEDDINGS"), 
    model_name=os.getenv("MODEL"),   
    rerank_model=os.getenv("RERANK_MODEL"),
    rerank_number_contexts=int(os.getenv("RERANK_NUMBER_CONTEXTS"))
)


def generate(prompt, model_parameters):
    try:
        output, context, source = rag.get_response(prompt, model_parameters)
        return output, context, source
    except HTTPError as err:
        if err.code == 400:
            gr.Warning(
                "The inference endpoint is only available Monday through Friday, from 08:00 to 20:00 CET."
            )
    except:
        gr.Warning(
            "Inference endpoint is not available right now. Please try again later."
        )
    return None, None, None


def submit_input(input_, num_chunks, max_new_tokens, repetition_penalty, top_k, top_p, do_sample, temperature):
    if input_.strip() == "":
        gr.Warning("Not possible to inference an empty input")
        return None


    model_parameters = {
        "NUM_CHUNKS": num_chunks,
        "max_new_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,
        "top_k": top_k,
        "top_p": top_p,
        "do_sample": do_sample,
        "temperature": temperature
    }

    output, context, source = generate(input_, model_parameters)
    sources_markup = ""

    for url in source:
        sources_markup += f'<a href="{url}" target="_blank">{url}</a><br>'

    return output, sources_markup, context  
    # return output.strip(), sources_markup, context


def change_interactive(text):
    if len(text) == 0:
        return gr.update(interactive=True), gr.update(interactive=False)
    return gr.update(interactive=True), gr.update(interactive=True)


def clear():
    return (
        None, 
        None,
        None,
        None,
        gr.Slider(value=2.0),
        gr.Slider(value=MAX_NEW_TOKENS),
        gr.Slider(value=1.0),
        gr.Slider(value=50),
        gr.Slider(value=0.99),
        gr.Checkbox(value=False),
        gr.Slider(value=0.35),
    )


def gradio_app():
    with gr.Blocks(theme=theme) as demo:
        with gr.Row():
            with gr.Column(scale=0.1):
                gr.Image("rag_image.jpg", elem_id="flor-banner", scale=1, height=256, width=256, show_label=False, show_download_button = False, show_share_button = False)
            with gr.Column():
                gr.Markdown(
                    """# TEST de Retrieval-Augmented Generation para proyecto RENFE
                    πŸ” 
                    
                    ⚠️ **Advertencias**: Esta es una versiΓ³n experimental. πŸ‘€
                    """
                )
        with gr.Row(equal_height=True):
            with gr.Column(variant="panel"):
                input_ = Textbox(
                    lines=11,
                    label="Input",
                    placeholder="",
                    # value = "Quina Γ©s la finalitat del Servei MeteorolΓ²gic de Catalunya?"
                )
                with gr.Row(variant="panel"):
                    clear_btn = Button(
                        "Clear",
                    )
                    submit_btn = Button("Submit", variant="primary", interactive=False)

                with gr.Row(variant="panel"):
                    with gr.Accordion("Model parameters", open=False, visible=SHOW_MODEL_PARAMETERS_IN_UI):
                        num_chunks = Slider(
                            minimum=1,
                            maximum=6,
                            step=1,
                            value=2,
                            label="Number of chunks"
                        )
                        max_new_tokens = Slider(
                            minimum=50,
                            maximum=2000,
                            step=1,
                            value=MAX_NEW_TOKENS,
                            label="Max tokens"
                        )
                        repetition_penalty = Slider(
                            minimum=0.1,
                            maximum=2.0,
                            step=0.1,
                            value=1.0,
                            label="Repetition penalty"
                        )
                        top_k = Slider(
                            minimum=1,
                            maximum=100,
                            step=1,
                            value=50,
                            label="Top k"
                        )
                        top_p = Slider(
                            minimum=0.01,
                            maximum=0.99,
                            value=0.99,
                            label="Top p"
                        )  
                        do_sample = Checkbox(
                            value=False, 
                            label="Do sample"
                        )
                        temperature = Slider(
                            minimum=0.1, 
                            maximum=1,
                            value=0.35,
                            label="Temperature"
                        )

                        parameters_compontents = [num_chunks, max_new_tokens, repetition_penalty, top_k, top_p, do_sample, temperature]

            with gr.Column(variant="panel"):
                output = Textbox(
                    lines=10, 
                    label="Output", 
                    interactive=False, 
                    show_copy_button=True
                )
                with gr.Accordion("Sources and context:", open=False):
                    source_context = gr.Markdown(
                        label="Sources",
                        show_label=False,
                    )
                    with gr.Accordion("See full context evaluation:", open=False):
                        context_evaluation = gr.Markdown(
                            label="Full context",
                            show_label=False,
                            # interactive=False, 
                            # autoscroll=False,
                            # show_copy_button=True
                        )
                

        input_.change(
            fn=change_interactive,
            inputs=[input_],
            outputs=[clear_btn, submit_btn],
            api_name=False,
        )

        input_.change(
            fn=None,
            inputs=[input_],
            api_name=False,
            js="""(i, m) => {
            document.getElementById('inputlenght').textContent = i.length + '  '
            document.getElementById('inputlenght').style.color =  (i.length > m) ? "#ef4444" : "";
        }""",
        )

        clear_btn.click(
            fn=clear, 
            inputs=[], 
            outputs=[input_, output, source_context, context_evaluation] + parameters_compontents,
              queue=False, 
              api_name=False
        )
        
        submit_btn.click(
            fn=submit_input, 
            inputs=[input_]+ parameters_compontents, 
            outputs=[output, source_context, context_evaluation],
            api_name="get-results"
        )

        with gr.Row():
            with gr.Column(scale=0.5):
                gr.Examples(
                    examples=[
                        ["""ΒΏSe pueden transportar mascotas en el AVE?"""],
                    ],
                    inputs=input_,
                    outputs=[output, source_context, context_evaluation],
                    fn=submit_input,
                )
                gr.Examples(
                    examples=[
                        ["""ΒΏCΓ³mo se crea un billete de dΓ­a del Pase MΓ³vil en la aplicaciΓ³n Rail Planner App?"""],
                    ],
                    inputs=input_,
                    outputs=[output, source_context, context_evaluation],
                    fn=submit_input,
                )
                gr.Examples(
                    examples=[
                        ["""ΒΏCΓ³mo puedo solicitar la factura de un abono con posterioridad a la compra?"""],
                    ],
                    inputs=input_,
                    outputs=[output, source_context, context_evaluation],
                    fn=submit_input,
                )

        demo.launch(show_api=True)


if __name__ == "__main__":
    gradio_app()