Spaces:
Running
Running
File size: 54,033 Bytes
8cb62ff 8f3dc34 afada69 ac63b1e 31f9cfa ac63b1e 8f3dc34 8cb62ff afada69 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff 31f9cfa 8cb62ff ac63b1e 14b46ba afada69 ac63b1e afada69 ac63b1e 8cb62ff ac63b1e afada69 8cb62ff afada69 8cb62ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 |
import functools
import sys
import os
import traceback
import typing
from threading import Thread
from datetime import datetime
import filelock
import psutil
from utils import set_seed, clear_torch_cache, save_generate_output, NullContext, wrapped_partial
SEED = 1236
set_seed(SEED)
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
from typing import Union
import numpy as np
import pandas as pd
import fire
import torch
from peft import PeftModel
from transformers import GenerationConfig, StoppingCriteriaList, AutoModel, TextIteratorStreamer
from accelerate import init_empty_weights, infer_auto_device_map
from prompter import Prompter
from finetune import get_loaders, example_data_points, generate_prompt, human, bot, inv_prompt_type_to_model_lower
from stopping import StoppingCriteriaSub
eval_extra_columns = ['prompt', 'response', 'score']
def main(
load_8bit: bool = False,
load_half: bool = True,
infer_devices: bool = True, # really if to "control" devices now
base_model: str = '',
tokenizer_base_model: str = '',
lora_weights: str = "",
gpu_id: int = 0, # if infer_devices = True and gpu_id != -1
prompt_type: Union[int, str] = None,
# input to generation
temperature: float = None,
top_p: float = None,
top_k: int = None,
num_beams: int = None,
repetition_penalty: float = None,
num_return_sequences: int = None,
do_sample: bool = None,
max_new_tokens: int = None,
min_new_tokens: int = None,
early_stopping: Union[bool, str] = None,
max_time: float = None,
debug: bool = False,
save_dir: str = None,
share: bool = True,
local_files_only: bool = False,
resume_download: bool = True,
use_auth_token: Union[str, bool] = False, # True requires CLI did huggingface-cli login before running
src_lang: str = "English",
tgt_lang: str = "Russian",
gradio: bool = True,
gradio_avoid_processing_markdown: bool = False,
chat: bool = True,
chat_history: int = 4096, # character length of chat context/history
chat_context: bool = False, # use default context if human_bot
stream_output: bool = True,
show_examples: bool = None,
verbose: bool = False,
h2ocolors: bool = True,
height: int = 400,
show_lora: bool = True,
# set to True to load --base_model after client logs in,
# to be able to free GPU memory when model is swapped
login_mode_if_model0: bool = False,
block_gradio_exit: bool = True,
concurrency_count: int = 1,
api_open: bool = False, # don't let API skip queue
allow_api: bool = True,
input_lines: int = 1,
sanitize_user_prompt: bool = True,
sanitize_bot_response: bool = True,
extra_model_options: typing.List[str] = [],
extra_lora_options: typing.List[str] = [],
score_model: str = 'OpenAssistant/reward-model-deberta-v3-large-v2',
auto_score: bool = True,
eval_sharegpt_prompts_only: int = 0,
eval_sharegpt_prompts_only_seed: int = 1234,
eval_sharegpt_as_output: bool = False,
hard_stop_list: typing.List[str] = [],
):
is_hf = bool(os.getenv("HUGGINGFACE_SPACES"))
is_gpth2oai = bool(os.getenv("GPT_H2O_AI"))
is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer
is_low_mem = is_hf # assumes run on 24GB consumer GPU
admin_pass = os.getenv("ADMIN_PASS")
# will sometimes appear in UI or sometimes actual generation, but maybe better than empty result
# but becomes unrecoverable sometimes if raise, so just be silent for now
raise_generate_gpu_exceptions = not is_public
# allow set token directly
use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
if is_public:
input_lines = 1 # ensure set, for ease of use
temperature = 0.2
top_p = 0.85
top_k = 70
do_sample = True
if is_low_mem:
base_model = 'h2oai/h2ogpt-oasst1-512-12b'
load_8bit = True
else:
base_model = 'h2oai/h2ogpt-oasst1-512-20b'
if is_low_mem:
load_8bit = True
if is_hf:
# must override share if in spaces
share = False
save_dir = os.getenv('SAVE_DIR', save_dir)
score_model = os.getenv('SCORE_MODEL', score_model)
if score_model == 'None':
score_model = ''
concurrency_count = int(os.getenv('CONCURRENCY_COUNT', concurrency_count))
api_open = bool(int(os.getenv('API_OPEN', api_open)))
allow_api = bool(int(os.getenv('ALLOW_API', allow_api)))
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
if n_gpus == 0:
gpu_id = None
load_8bit = False
load_half = False
infer_devices = False
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = False
torch.set_default_dtype(torch.float32)
if psutil.virtual_memory().available < 94*1024**3:
# 12B uses ~94GB
# 6.9B uses ~47GB
base_model = 'h2oai/h2ogpt-oig-oasst1-512-6.9b'
# get defaults
model_lower = base_model.lower()
if not gradio:
# force, else not single response like want to look at
stream_output = False
# else prompt removal can mess up output
chat = False
placeholder_instruction, placeholder_input, \
stream_output, show_examples, \
prompt_type, temperature, top_p, top_k, num_beams, \
max_new_tokens, min_new_tokens, early_stopping, max_time, \
repetition_penalty, num_return_sequences, \
do_sample, \
src_lang, tgt_lang, \
examples, \
task_info = \
get_generate_params(model_lower, chat,
stream_output, show_examples,
prompt_type, temperature, top_p, top_k, num_beams,
max_new_tokens, min_new_tokens, early_stopping, max_time,
repetition_penalty, num_return_sequences,
do_sample,
)
if not gradio:
if eval_sharegpt_prompts_only > 0:
# override default examples with shareGPT ones for human-level eval purposes only
eval_filename = 'ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json'
if not os.path.isfile(eval_filename):
os.system(
'wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % eval_filename)
import json
data = json.load(open(eval_filename, 'rt'))
# focus on data that starts with human, else likely chopped from other data
turn_start = 0 # odd in general
data = [x for x in data if len(x['conversations']) > turn_start + 1 and
x['conversations'][turn_start]['from'] == 'human' and
x['conversations'][turn_start + 1]['from'] == 'gpt']
np.random.seed(eval_sharegpt_prompts_only_seed)
example1 = examples[-1] # pick reference example
examples = []
responses = []
for i in list(np.random.randint(0, len(data), size=eval_sharegpt_prompts_only)):
assert data[i]['conversations'][turn_start]['from'] == 'human'
instruction = data[i]['conversations'][turn_start]['value']
assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt'
output = data[i]['conversations'][turn_start + 1]['value']
examplenew = example1.copy()
assert not chat, "No gradio must use chat=False, uses nochat instruct"
examplenew[eval_func_param_names.index('instruction_nochat')] = instruction
examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input
examplenew[eval_func_param_names.index('context')] = get_context(chat_context, prompt_type)
examples.append(examplenew)
responses.append(output)
num_examples = len(examples)
scoring_path = 'scoring'
os.makedirs(scoring_path, exist_ok=True)
if eval_sharegpt_as_output:
used_base_model = 'gpt35'
used_lora_weights = ''
else:
used_base_model = str(base_model.split('/')[-1])
used_lora_weights = str(lora_weights.split('/')[-1])
eval_filename = "df_scores_%s_%s_%s_%s_%s_%s.parquet" % (num_examples, eval_sharegpt_prompts_only,
eval_sharegpt_prompts_only_seed,
eval_sharegpt_as_output,
used_base_model,
used_lora_weights)
eval_filename = os.path.join(scoring_path, eval_filename)
# torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently
context_class = NullContext() if n_gpus > 1 or n_gpus == 0 else torch.device("cuda")
with context_class:
# ensure was set right above before examples generated
assert not stream_output, "stream_output=True does not make sense with example loop"
import time
from functools import partial
# get score model
smodel, stokenizer, sdevice = get_score_model(**locals())
if not eval_sharegpt_as_output:
model, tokenizer, device = get_model(**locals())
model_state = [model, tokenizer, device, base_model]
fun = partial(evaluate, model_state, debug=debug, save_dir=save_dir, is_low_mem=is_low_mem,
raise_generate_gpu_exceptions=raise_generate_gpu_exceptions,
chat_context=chat_context,
concurrency_count=concurrency_count)
else:
assert eval_sharegpt_prompts_only > 0
def get_response(*args, exi=0):
# assumes same ordering of examples and responses
yield responses[exi]
fun = get_response
t0 = time.time()
score_dump = []
import matplotlib.pyplot as plt
for exi, ex in enumerate(examples):
instruction = ex[eval_func_param_names.index('instruction_nochat')]
iinput = ex[eval_func_param_names.index('iinput_nochat')]
context = ex[eval_func_param_names.index('context')]
clear_torch_cache()
print("")
print("START" + "=" * 100)
print("Question: %s %s" % (instruction, ('input=%s' % iinput if iinput else '')))
print("-" * 105)
# fun yields as generator, so have to iterate over it
# Also means likely do NOT want --stream_output=True, else would show all generations
gener = fun(*tuple(ex), exi=exi) if eval_sharegpt_as_output else fun(*tuple(ex))
for res in gener:
print(res)
if smodel:
score_with_prompt = False
if score_with_prompt:
data_point = dict(instruction=instruction, input=iinput, context=context)
prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output)
prompt = prompter.generate_prompt(data_point)
else:
# just raw input and output
if eval_sharegpt_prompts_only > 0:
# only our own examples have this filled at moment
assert iinput in [None, ''], iinput # should be no iinput
if not (chat_context and prompt_type == 'human_bot'):
assert context in [None, ''], context # should be no context
prompt = instruction
cutoff_len = 768 if is_low_mem else 2048
inputs = stokenizer(prompt, res,
return_tensors="pt",
truncation=True,
max_length=cutoff_len)
try:
score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
except torch.cuda.OutOfMemoryError as e:
print("GPU OOM 1: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True)
traceback.print_exc()
score = 0.0
clear_torch_cache()
except (Exception, RuntimeError) as e:
if 'Expected all tensors to be on the same device' in str(e) or \
'expected scalar type Half but found Float' in str(e) or \
'probability tensor contains either' in str(e) or \
'cublasLt ran into an error!' in str(e):
print("GPU error: question: %s answer: %s exception: %s" % (prompt, res, str(e)),
flush=True)
traceback.print_exc()
score = 0.0
clear_torch_cache()
else:
raise
print("SCORE %s: %s" % (exi, score), flush=True)
score_dump.append(ex + [prompt, res, score])
# dump every score in case abort
df_scores = pd.DataFrame(score_dump,
columns=eval_func_param_names + eval_extra_columns)
df_scores.to_parquet(eval_filename, index=False)
# plot histogram so far
plt.figure(figsize=(10, 10))
plt.hist(df_scores['score'], bins=20)
score_avg = np.mean(df_scores['score'])
score_median = np.median(df_scores['score'])
plt.title("Score avg: %s median: %s" % (score_avg, score_median))
plt.savefig(eval_filename.replace('.parquet', '.png'))
plt.close()
print("END" + "=" * 102)
print("")
t2 = time.time()
print("Time taken so far: %.4f about %.4g per example" % (t2 - t0, (t2 - t0) / (1 + exi)))
t1 = time.time()
print("Total time taken: %.4f about %.4g per example" % (t1 - t0, (t1 - t0) / num_examples))
return eval_filename
if gradio:
# imported here so don't require gradio to run generate
from gradio_runner import go_gradio
# get default model
all_kwargs = locals().copy()
if all_kwargs.get('base_model') and not all_kwargs['login_mode_if_model0']:
model0, tokenizer0, device = get_model(**all_kwargs)
else:
# if empty model, then don't load anything, just get gradio up
model0, tokenizer0, device = None, None, None
model_state0 = [model0, tokenizer0, device, all_kwargs['base_model']]
# get score model
smodel, stokenizer, sdevice = get_score_model(**all_kwargs)
score_model_state0 = [smodel, stokenizer, sdevice, score_model]
go_gradio(**locals())
def get_device():
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
return device
def get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type,
gpu_id=0,
use_auth_token=False):
"""
Ensure model gets on correct device
:param base_model:
:param model_loader:
:param load_half:
:param model_kwargs:
:param reward_type:
:param gpu_id:
:param use_auth_token:
:return:
"""
with init_empty_weights():
from transformers import AutoConfig
config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token)
model = AutoModel.from_config(
config,
)
# NOTE: Can specify max_memory={0: max_mem, 1: max_mem}, to shard model
# NOTE: Some models require avoiding sharding some layers,
# then would pass no_split_module_classes and give list of those layers.
device_map = infer_auto_device_map(
model,
dtype=torch.float16 if load_half else torch.float32,
)
if hasattr(model, 'model'):
device_map_model = infer_auto_device_map(
model.model,
dtype=torch.float16 if load_half else torch.float32,
)
device_map.update(device_map_model)
print('device_map: %s' % device_map, flush=True)
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
if n_gpus > 0:
if gpu_id >= 0:
# FIXME: If really distributes model, tend to get things like: ValueError: gpt_neox.embed_in.weight doesn't have any device set.
# So avoid for now, just put on first GPU, unless score_model, put on last
if reward_type:
device_map = {'': n_gpus - 1}
else:
device_map = {'': min(n_gpus - 1, gpu_id)}
if gpu_id == -1:
device_map = {'': 'cuda'}
else:
device_map = {'': 'cpu'}
model_kwargs['load_in_8bit'] = False
load_in_8bit = model_kwargs.get('load_in_8bit', False)
model_kwargs['device_map'] = device_map
if load_in_8bit or not load_half:
model = model_loader.from_pretrained(
base_model,
**model_kwargs,
)
else:
model = model_loader.from_pretrained(
base_model,
**model_kwargs,
).half()
return model
def get_model(
load_8bit: bool = False,
load_half: bool = True,
infer_devices: bool = True,
base_model: str = '',
tokenizer_base_model: str = '',
lora_weights: str = "",
gpu_id: int = 0,
reward_type: bool = None,
local_files_only: bool = False,
resume_download: bool = True,
use_auth_token: Union[str, bool] = False,
compile: bool = True,
**kwargs,
):
"""
:param load_8bit: load model in 8-bit, not supported by all models
:param load_half: load model in 16-bit
:param infer_devices: Use torch infer of optimal placement of layers on devices (for non-lora case)
For non-LORA case, False will spread shards across multiple GPUs, but this can lead to cuda:x cuda:y mismatches
So it is not the default
:param base_model: name/path of base model
:param tokenizer_base_model: name/path of tokenizer
:param lora_weights: name/path
:param gpu_id: which GPU (0..n_gpus-1) or allow all GPUs if relevant (-1)
:param reward_type: reward type model for sequence classification
:param local_files_only: use local files instead of from HF
:param resume_download: resume downloads from HF
:param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo
:param compile: whether to compile torch model
:param kwargs:
:return:
"""
print("Get %s model" % base_model, flush=True)
if lora_weights is not None and lora_weights.strip():
print("Get %s lora weights" % lora_weights, flush=True)
device = get_device()
if 'gpt2' in base_model.lower():
# RuntimeError: where expected condition to be a boolean tensor, but got a tensor with dtype Half
load_8bit = False
assert base_model.strip(), (
"Please choose a base model with --base_model (CLI) or in Models Tab (gradio)"
)
from transformers import AutoConfig
config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token)
llama_type_from_config = 'llama' in str(config).lower()
llama_type_from_name = "llama" in base_model.lower()
llama_type = llama_type_from_config or llama_type_from_name
if llama_type:
print("Detected as llama type from"
" config (%s) or name (%s)" % (llama_type_from_config, llama_type_from_name), flush=True)
model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=reward_type)
if not tokenizer_base_model:
tokenizer_base_model = base_model
if tokenizer_loader is not None and not isinstance(tokenizer_loader, str):
tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
else:
tokenizer = tokenizer_loader
if isinstance(tokenizer, str):
# already a pipeline, tokenizer_loader is string for task
model = model_loader(tokenizer,
model=base_model,
device=0 if device == "cuda" else -1,
torch_dtype=torch.float16 if device == 'cuda' else torch.float32)
else:
assert device in ["cuda", "cpu"], "Unsupported device %s" % device
model_kwargs = dict(local_files_only=local_files_only,
torch_dtype=torch.float16 if device == 'cuda' else torch.float32,
resume_download=resume_download,
use_auth_token=use_auth_token)
if 'mbart-' not in base_model.lower():
model_kwargs.update(dict(load_in_8bit=load_8bit,
device_map={"": 0} if load_8bit and device == 'cuda' else "auto",
))
if 'OpenAssistant/reward-model'.lower() in base_model.lower():
# could put on other GPUs
model_kwargs['device_map'] = {"": 0} if device == 'cuda' else {"": 'cpu'}
model_kwargs.pop('torch_dtype', None)
if not lora_weights:
with torch.device(device):
if infer_devices:
model = get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type,
gpu_id=gpu_id, use_auth_token=use_auth_token)
else:
if load_half and not load_8bit:
model = model_loader.from_pretrained(
base_model,
**model_kwargs).half()
else:
model = model_loader.from_pretrained(
base_model,
**model_kwargs)
elif load_8bit:
model = model_loader.from_pretrained(
base_model,
**model_kwargs
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16 if device == 'cuda' else torch.float32,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
device_map={"": 0} if device == 'cuda' else {"": 'cpu'}, # seems to be required
)
else:
with torch.device(device):
model = model_loader.from_pretrained(
base_model,
**model_kwargs
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16 if device == 'cuda' else torch.float32,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
device_map="auto",
)
if load_half:
model.half()
# unwind broken decapoda-research config
if llama_type:
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if 'gpt2' in base_model.lower():
# add special tokens that otherwise all share the same id
tokenizer.add_special_tokens({'bos_token': '<bos>',
'eos_token': '<eos>',
'pad_token': '<pad>'})
if not isinstance(tokenizer, str):
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32" and compile:
model = torch.compile(model)
return model, tokenizer, device
def get_score_model(**kwargs):
# score model
if kwargs.get('score_model') is not None and kwargs.get('score_model').strip():
score_all_kwargs = kwargs.copy()
score_all_kwargs['load_8bit'] = False
score_all_kwargs['load_half'] = False
score_all_kwargs['base_model'] = kwargs.get('score_model').strip()
score_all_kwargs['tokenizer_base_model'] = ''
score_all_kwargs['lora_weights'] = ''
score_all_kwargs['llama_type'] = False
score_all_kwargs['compile'] = False
smodel, stokenizer, sdevice = get_model(**score_all_kwargs)
else:
smodel, stokenizer, sdevice = None, None, None
return smodel, stokenizer, sdevice
eval_func_param_names = ['instruction',
'iinput',
'context',
'stream_output',
'prompt_type',
'temperature',
'top_p',
'top_k',
'num_beams',
'max_new_tokens',
'min_new_tokens',
'early_stopping',
'max_time',
'repetition_penalty',
'num_return_sequences',
'do_sample',
'chat',
'instruction_nochat',
'iinput_nochat',
]
def evaluate(
model_state,
# START NOTE: Examples must have same order of parameters
instruction,
iinput,
context,
stream_output,
prompt_type,
temperature,
top_p,
top_k,
num_beams,
max_new_tokens,
min_new_tokens,
early_stopping,
max_time,
repetition_penalty,
num_return_sequences,
do_sample,
chat,
instruction_nochat,
iinput_nochat,
# END NOTE: Examples must have same order of parameters
src_lang=None,
tgt_lang=None,
debug=False,
concurrency_count=None,
save_dir=None,
hard_stop_list=None,
sanitize_bot_response=True,
model_state0=None,
is_low_mem=None,
raise_generate_gpu_exceptions=None,
chat_context=None,
):
# ensure passed these
assert concurrency_count is not None
assert is_low_mem is not None
assert raise_generate_gpu_exceptions is not None
assert chat_context is not None
if debug:
locals_dict = locals().copy()
locals_dict.pop('model_state', None)
locals_dict.pop('model_state0', None)
print(locals_dict)
no_model_msg = "Please choose a base model with --base_model (CLI) or in Models Tab (gradio).\nThen start New Conversation"
if model_state0 is None:
# e.g. for no gradio case, set dummy value, else should be set
model_state0 = [None, None, None, None]
if model_state is not None and len(model_state) == 4 and not isinstance(model_state[0], str):
# try to free-up original model (i.e. list was passed as reference)
if model_state0 is not None and model_state0[0] is not None:
model_state0[0].cpu()
model_state0[0] = None
# try to free-up original tokenizer (i.e. list was passed as reference)
if model_state0 is not None and model_state0[1] is not None:
model_state0[1] = None
clear_torch_cache()
model, tokenizer, device, base_model = model_state
elif model_state0 is not None and len(model_state0) == 4 and model_state0[0] is not None:
assert isinstance(model_state[0], str)
model, tokenizer, device, base_model = model_state0
else:
raise AssertionError(no_model_msg)
if base_model is None:
raise AssertionError(no_model_msg)
assert base_model.strip(), no_model_msg
assert model, "Model is missing"
assert tokenizer, "Tokenizer is missing"
# choose chat or non-chat mode
if not chat:
instruction = instruction_nochat
iinput = iinput_nochat
if not context:
# get hidden context if have one
context = get_context(chat_context, prompt_type)
data_point = dict(context=context, instruction=instruction, input=iinput)
prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output)
prompt = prompter.generate_prompt(data_point)
if hard_stop_list is None:
# acts like undo on user entry and bot response
hard_stop_list = []
if isinstance(tokenizer, str):
# pipeline
if tokenizer == "summarization":
key = 'summary_text'
else:
raise RuntimeError("No such task type %s" % tokenizer)
# NOTE: uses max_length only
yield model(prompt, max_length=max_new_tokens)[0][key]
if 'mbart-' in base_model.lower():
assert src_lang is not None
tokenizer.src_lang = languages_covered()[src_lang]
if chat:
# override, ignore user change
num_return_sequences = 1
if prompt_type in ['human_bot', 'instruct_vicuna', 'instruct_with_end']:
if prompt_type == 'human_bot':
# encounters = [prompt.count(human) + 1, prompt.count(bot) + 1]
# stopping only starts once output is beyond prompt
# 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added
stop_words = [human, bot, '\n' + human, '\n' + bot]
encounters = [1, 2]
elif prompt_type == 'instruct_vicuna':
# even below is not enough, generic strings and many ways to encode
stop_words = [
'### Human:',
"""
### Human:""",
"""
### Human:
""",
'### Assistant:',
"""
### Assistant:""",
"""
### Assistant:
""",
]
encounters = [1, 2]
else:
# some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise
stop_words = ['### End']
encounters = [1]
stop_words_ids = [
tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
# handle single token case
stop_words_ids = [x if len(x.shape) > 0 else torch.tensor([x]) for x in stop_words_ids]
stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0]
# avoid padding in front of tokens
if tokenizer.pad_token:
stop_words_ids = [x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x for x in stop_words_ids]
# handle fake \n added
stop_words_ids = [x[1:] if y[0] == '\n' else x for x, y in zip(stop_words_ids, stop_words)]
# build stopper
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids, encounters=encounters, device=device)])
else:
stopping_criteria = StoppingCriteriaList()
# help to avoid errors like:
# RuntimeError: The size of tensor a (2048) must match the size of tensor b (2049) at non-singleton dimension 3
# RuntimeError: expected scalar type Half but found Float
# with - 256
max_length_tokenize = 768 - 256 if is_low_mem else 2048 - 256
cutoff_len = max_length_tokenize * 4 # if reaches limit, then can't generate new tokens
output_smallest = 30 * 4
prompt = prompt[-cutoff_len - output_smallest:]
inputs = tokenizer(prompt,
return_tensors="pt",
truncation=True,
max_length=max_length_tokenize)
if debug and len(inputs["input_ids"]) > 0:
print('input_ids length', len(inputs["input_ids"][0]), flush=True)
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=float(temperature),
top_p=float(top_p),
top_k=top_k,
num_beams=num_beams,
do_sample=do_sample,
repetition_penalty=float(repetition_penalty),
num_return_sequences=num_return_sequences,
renormalize_logits=True,
remove_invalid_values=True,
)
gen_kwargs = dict(input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens, # prompt + new
min_new_tokens=min_new_tokens, # prompt + new
early_stopping=early_stopping, # False, True, "never"
max_time=max_time,
stopping_criteria=stopping_criteria,
)
if 'gpt2' in base_model.lower():
gen_kwargs.update(dict(bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id))
elif 'mbart-' in base_model.lower():
assert tgt_lang is not None
tgt_lang = languages_covered()[tgt_lang]
gen_kwargs.update(dict(forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang]))
else:
gen_kwargs.update(dict(pad_token_id=tokenizer.eos_token_id))
decoder = functools.partial(tokenizer.decode,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
decoder_raw = functools.partial(tokenizer.decode,
skip_special_tokens=False,
clean_up_tokenization_spaces=True,
)
with torch.no_grad():
# protection for gradio not keeping track of closed users,
# else hit bitsandbytes lack of thread safety:
# https://github.com/h2oai/h2ogpt/issues/104
# but only makes sense if concurrency_count == 1
context_class = NullContext #if concurrency_count > 1 else filelock.FileLock
print('Pre-Generate: %s' % str(datetime.now()), flush=True)
decoded_output = None
with context_class("generate.lock"):
print('Generate: %s' % str(datetime.now()), flush=True)
# decoded tokenized prompt can deviate from prompt due to special characters
inputs_decoded = decoder(input_ids[0])
inputs_decoded_raw = decoder_raw(input_ids[0])
if inputs_decoded == prompt:
# normal
pass
elif inputs_decoded.lstrip() == prompt.lstrip():
# sometimes extra space in front, make prompt same for prompt removal
prompt = inputs_decoded
elif inputs_decoded_raw == prompt:
# some models specify special tokens that are part of normal prompt, so can't skip them
inputs_decoded_raw = inputs_decoded
decoder = decoder_raw
else:
print("WARNING: Special characters in prompt", flush=True)
if stream_output:
skip_prompt = False
streamer = TextIteratorStreamer(tokenizer, skip_prompt=skip_prompt)
gen_kwargs.update(dict(streamer=streamer))
target_func = generate_with_exceptions
target = wrapped_partial(generate_with_exceptions, model.generate, prompt, inputs_decoded,
raise_generate_gpu_exceptions, **gen_kwargs)
thread = Thread(target=target)
thread.start()
outputs = ""
for new_text in streamer:
outputs += new_text
yield prompter.get_response(outputs, prompt=inputs_decoded,
sanitize_bot_response=sanitize_bot_response)
decoded_output = outputs
else:
outputs = model.generate(**gen_kwargs)
outputs = [decoder(s) for s in outputs.sequences]
yield prompter.get_response(outputs, prompt=inputs_decoded,
sanitize_bot_response=sanitize_bot_response)
if outputs and len(outputs) >= 1:
decoded_output = prompt + outputs[0]
if save_dir and decoded_output:
save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir)
print('Post-Generate: %s decoded_output: %s' % (str(datetime.now()), len(decoded_output) if decoded_output else -1), flush=True)
def generate_with_exceptions(func, prompt, inputs_decoded, raise_generate_gpu_exceptions, **kwargs):
try:
func(**kwargs)
except torch.cuda.OutOfMemoryError as e:
print("GPU OOM 2: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
flush=True)
if kwargs['input_ids'] is not None:
kwargs['input_ids'].cpu()
kwargs['input_ids'] = None
traceback.print_exc()
clear_torch_cache()
return
except (Exception, RuntimeError) as e:
if 'Expected all tensors to be on the same device' in str(e) or \
'expected scalar type Half but found Float' in str(e) or \
'probability tensor contains either' in str(e) or \
'cublasLt ran into an error!' in str(e) or \
'mat1 and mat2 shapes cannot be multiplied' in str(e):
print(
"GPU Error: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
flush=True)
traceback.print_exc()
clear_torch_cache()
if raise_generate_gpu_exceptions:
raise
return
else:
clear_torch_cache()
raise
def get_generate_params(model_lower, chat,
stream_output, show_examples,
prompt_type, temperature, top_p, top_k, num_beams,
max_new_tokens, min_new_tokens, early_stopping, max_time,
repetition_penalty, num_return_sequences,
do_sample):
use_defaults = False
use_default_examples = True
examples = []
task_info = f"{prompt_type}"
if model_lower:
print(f"Using Model {model_lower}", flush=True)
else:
print("No model defined yet", flush=True)
min_new_tokens = min_new_tokens if min_new_tokens is not None else 0
early_stopping = early_stopping if early_stopping is not None else False
max_time_defaults = 60 * 3
max_time = max_time if max_time is not None else max_time_defaults
if not prompt_type and model_lower in inv_prompt_type_to_model_lower:
prompt_type = inv_prompt_type_to_model_lower[model_lower]
# examples at first don't include chat, instruction_nochat, iinput_nochat, added at end
if show_examples is None:
if chat:
show_examples = False
else:
show_examples = True
summarize_example1 = """Jeff: Can I train a ? Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face"""
if 'bart-large-cnn-samsum' in model_lower or 'flan-t5-base-samsum' in model_lower:
placeholder_instruction = summarize_example1
placeholder_input = ""
use_defaults = True
use_default_examples = False
examples += [
[placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults,
1.0, 1,
False]]
task_info = "Summarization"
elif 't5-' in model_lower or 't5' == model_lower or 'flan-' in model_lower:
placeholder_instruction = "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?"
placeholder_input = ""
use_defaults = True
use_default_examples = True
task_info = "Multi-Task: Q/A, translation, Chain-of-Thought, Logical Reasoning, Summarization, etc. Best to use task prefix as trained on, e.g. `translate English to German: ` (space after colon)"
elif 'mbart-' in model_lower:
placeholder_instruction = "The girl has long hair."
placeholder_input = ""
use_defaults = True
use_default_examples = False
examples += [
[placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults,
1.0, 1,
False]]
elif 'gpt2' in model_lower:
placeholder_instruction = "The sky is"
placeholder_input = ""
prompt_type = prompt_type or 'plain'
use_default_examples = True # some will be odd "continuations" but can be ok
examples += [
[placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults,
1.0, 1,
False]]
task_info = "Auto-complete phrase, code, etc."
use_defaults = True
else:
if chat:
placeholder_instruction = "Enter a question or imperative."
else:
placeholder_instruction = "Give detailed answer for whether Einstein or Newton is smarter."
placeholder_input = ""
if model_lower:
prompt_type = prompt_type or 'human_bot'
else:
prompt_type = ''
examples += [[summarize_example1, 'Summarize' if prompt_type not in ['plain', 'instruct_simple'] else '', "",
stream_output, prompt_type or 'plain', 0.1, 0.75, 40, 4, 256, 0, False, max_time_defaults, 1.0, 1,
False]]
task_info = "No task"
if prompt_type == 'instruct':
task_info = "Answer question or follow imperative as instruction with optionally input."
elif prompt_type == 'plain':
task_info = "Auto-complete phrase, code, etc."
elif prompt_type == 'human_bot':
if chat:
task_info = "Chat (Shift-Enter to give question/imperative, input concatenated with instruction)"
else:
task_info = "Ask question/imperative (input concatenated with instruction)"
# revert to plain if still nothing
prompt_type = prompt_type or 'plain'
if use_defaults:
temperature = 1.0 if temperature is None else temperature
top_p = 1.0 if top_p is None else top_p
top_k = 40 if top_k is None else top_k
num_beams = num_beams or 1
max_new_tokens = max_new_tokens or 128
repetition_penalty = repetition_penalty or 1.07
num_return_sequences = min(num_beams, num_return_sequences or 1)
do_sample = False if do_sample is None else do_sample
else:
temperature = 0.2 if temperature is None else temperature
top_p = 0.85 if top_p is None else top_p
top_k = 70 if top_k is None else top_k
if chat:
num_beams = num_beams or 1
else:
num_beams = num_beams or 4
max_new_tokens = max_new_tokens or 256
repetition_penalty = repetition_penalty or 1.07
num_return_sequences = min(num_beams, num_return_sequences or 1)
do_sample = True if do_sample is None else do_sample
# doesn't include chat, instruction_nochat, iinput_nochat, added later
params_list = ["", stream_output, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens,
early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample]
if use_default_examples:
examples += [
["Translate English to French", "Good morning"] + params_list,
["Give detailed answer for whether Einstein or Newton is smarter.", ''] + params_list,
["Explain in detailed list, all the best practices for coding in python.", ''] + params_list,
[
"Create a markdown table with 3 rows for the primary colors, and 2 columns, with color name and hex codes.",
''] + params_list,
['Translate to German: My name is Arthur', ''] + params_list,
["Please answer to the following question. Who is going to be the next Ballon d'or?", ''] + params_list,
['Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering.',
''] + params_list,
['Please answer the following question. What is the boiling point of Nitrogen?', ''] + params_list,
['Answer the following yes/no question. Can you write a whole Haiku in a single tweet?', ''] + params_list,
["Simplify the following expression: (False or False and True). Explain your answer.", ''] + params_list,
[
"Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?",
''] + params_list,
['The square root of x is the cube root of y. What is y to the power of 2, if x = 4?', ''] + params_list,
[
'Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?',
''] + params_list,
["""def area_of_rectangle(a: float, b: float):
\"\"\"Return the area of the rectangle.\"\"\"""", ''] + params_list,
["""# a function in native python:
def mean(a):
return sum(a)/len(a)
# the same function using numpy:
import numpy as np
def mean(a):""", ''] + params_list,
["""X = np.random.randn(100, 100)
y = np.random.randint(0, 1, 100)
# fit random forest classifier with 20 estimators""", ''] + params_list,
]
src_lang = "English"
tgt_lang = "Russian"
# move to correct position
for example in examples:
example += [chat, '', '']
# adjust examples if non-chat mode
if not chat:
example[eval_func_param_names.index('instruction_nochat')] = example[
eval_func_param_names.index('instruction')]
example[eval_func_param_names.index('instruction')] = ''
example[eval_func_param_names.index('iinput_nochat')] = example[eval_func_param_names.index('iinput')]
example[eval_func_param_names.index('iinput')] = ''
return placeholder_instruction, placeholder_input, \
stream_output, show_examples, \
prompt_type, temperature, top_p, top_k, num_beams, \
max_new_tokens, min_new_tokens, early_stopping, max_time, \
repetition_penalty, num_return_sequences, \
do_sample, \
src_lang, tgt_lang, \
examples, \
task_info
def languages_covered():
# https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt#languages-covered
covered = """Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)"""
covered = covered.split(', ')
covered = {x.split(' ')[0]: x.split(' ')[1].replace(')', '').replace('(', '') for x in covered}
return covered
def get_context(chat_context, prompt_type):
if chat_context and prompt_type == 'human_bot':
context0 = """<bot>: I am an intelligent, helpful, truthful, and fair assistant named h2oGPT, who will give accurate, balanced, and reliable responses. I will not respond with I don't know or I don't understand.
<human>: I am a human person seeking useful assistance and request all questions be answered completely, and typically expect detailed responses. Give answers in numbered list format if several distinct but related items are being listed."""
else:
context0 = ''
return context0
def test_test_prompt(prompt_type='instruct', data_point=0):
example_data_point = example_data_points[data_point]
example_data_point.pop('output', None)
return generate_prompt(example_data_point, prompt_type, False, False)
def score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_len):
question = question[-cutoff_len:]
answer = answer[-cutoff_len:]
inputs = stokenizer(question, answer,
return_tensors="pt",
truncation=True,
max_length=max_length_tokenize).to(smodel.device)
try:
score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
except torch.cuda.OutOfMemoryError as e:
print("GPU OOM 3: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True)
del inputs
traceback.print_exc()
clear_torch_cache()
return 'Response Score: GPU OOM'
except (Exception, RuntimeError) as e:
if 'Expected all tensors to be on the same device' in str(e) or \
'expected scalar type Half but found Float' in str(e) or \
'probability tensor contains either' in str(e) or \
'cublasLt ran into an error!' in str(e):
print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)),
flush=True)
traceback.print_exc()
clear_torch_cache()
return 'Response Score: GPU Error'
else:
raise
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
return score
if __name__ == "__main__":
print("""
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B
python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B'
python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B'
# generate without lora weights, no prompt
python generate.py --base_model='EleutherAI/gpt-neox-20b' --prompt_type='plain'
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq'
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' --lora_weights='lora_20B_daifaq'
# OpenChatKit settings:
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0
python generate.py --base_model='distilgpt2' --prompt_type='plain' --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 --share=False
python generate.py --base_model='t5-large' --prompt_type='simple_instruct'
python generate.py --base_model='philschmid/bart-large-cnn-samsum'
python generate.py --base_model='philschmid/flan-t5-base-samsum'
python generate.py --base_model='facebook/mbart-large-50-many-to-many-mmt'
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot' --lora_weights='GPT-NeoXT-Chat-Base-20B.merged.json.8_epochs.57b2892c53df5b8cefac45f84d019cace803ef26.28'
must have 4*48GB GPU and run without 8bit in order for sharding to work with infer_devices=False
can also pass --prompt_type='human_bot' and model can somewhat handle instructions without being instruct tuned
python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --infer_devices=False --prompt_type='human_bot'
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6.9b
""", flush=True)
fire.Fire(main)
|