h2ogpt-chatbot / finetune.py
pseudotensor's picture
Update with h2oGPT hash 5089a15c88b6f91136ce9c946677b658ffebf13a
8910711
raw
history blame
39.4 kB
import os
import pathlib
import random
import shutil
import subprocess
import sys
import time
from datetime import datetime
from typing import List, Union
import fire
import numpy as np
import torch
from datasets import load_dataset, concatenate_datasets
import transformers
import torch.distributed as dist
from peft import (
prepare_model_for_int8_training,
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
)
from peft import mapping
lora_mappings = mapping.TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING
def log(*args, **kwargs):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(*args, **kwargs)
try:
import neptune
from transformers.integrations import NeptuneCallback
neptune_run = neptune.init_run(
source_files=[],
)
log("Connected to Neptune.")
except ImportError:
neptune_run = None
log("Please pip install neptune for tracking.")
except neptune.exceptions.NeptuneMissingApiTokenException:
neptune_run = None
os.environ["NEPTUNE_MODE"] = 'debug'
log("No neptune configured, set NEPTUNE_API_TOKEN env var.")
from enum import Enum
class PromptType(Enum):
plain = 0
instruct = 1
quality = 2
human_bot = 3
dai_faq = 4
summarize = 5
simple_instruct = 6
instruct_vicuna = 7
instruct_with_end = 8
human_bot_orig = 9
prompt_type_to_model_name = {
'plain': [
'EleutherAI/gpt-j-6B',
'EleutherAI/pythia-6.9b',
'EleutherAI/pythia-12b',
'EleutherAI/pythia-12b-deduped',
'EleutherAI/gpt-neox-20b',
'decapoda-research/llama-7b-hf',
'decapoda-research/llama-13b-hf',
'decapoda-research/llama-30b-hf',
'decapoda-research/llama-65b-hf',
'facebook/mbart-large-50-many-to-many-mmt',
'philschmid/bart-large-cnn-samsum',
'philschmid/flan-t5-base-samsum',
'gpt2',
'distilgpt2',
],
'instruct': [],
'instruct_with_end': ['databricks/dolly-v2-12b'],
'quality': [],
'human_bot': [
'h2oai/h2ogpt-oig-oasst1-256-12b',
'h2oai/h2ogpt-oasst1-512-12b',
'h2oai/h2ogpt-oasst1-256-20b',
'h2oai/h2ogpt-oasst1-512-20b',
'h2oai/h2ogpt-oig-oasst1-256-6.9b',
],
'dai_faq': [],
'summarize': [],
'simple_instruct': ['t5-small', 't5-large', 'google/flan-t5', 'google/flan-t5-xxl', 'google/flan-ul2'],
'instruct_vicuna': ['AlekseyKorshuk/vicuna-7b'],
'human_bot_orig': ['togethercomputer/GPT-NeoXT-Chat-Base-20B'],
}
inv_prompt_type_to_model_name = {v.strip(): k for k, l in prompt_type_to_model_name.items() for v in l}
inv_prompt_type_to_model_lower = {v.strip().lower(): k for k, l in prompt_type_to_model_name.items() for v in l}
human = '<human>:'
bot = "<bot>:"
prompt_types_strings = []
for p in PromptType:
prompt_types_strings.extend([p.name])
prompt_types = []
for p in PromptType:
prompt_types.extend([p.name, p.value, str(p.value)])
# supported by huggingface evaluate
supported_metrics = ['bleu', 'rouge', 'sacrebleu', 'meteor']
def train(
save_code: bool = False,
run_id: int = None,
base_model: str = 'h2oai/h2ogpt-oig-oasst1-512-6.9b',
# base_model: str = 'h2oai/h2ogpt-oasst1-512-12b',
# base_model: str = 'h2oai/h2ogpt-oasst1-512-20b',
# base_model: str = 'EleutherAI/gpt-neox-20b',
# base_model: str = 'EleutherAI/pythia-12b-deduped',
# base_model: str = 'togethercomputer/GPT-NeoXT-Chat-Base-20B',
# base_model: str = 'decapoda-research/llama-7b-hf',
# base_model: str = 'decapoda-research/llama-13b-hf',
# base_model: str = 'decapoda-research/llama-30b-hf',
# base_model: str = 'EleutherAI/gpt-j-6B',
# only needed if base_model is self-exported HF state without tokenizer
tokenizer_base_model: str = None,
# tokenizer_base_model: str = 'EleutherAI/gpt-neox-20b',
data_path: str = None,
data_col_dict: dict = None,
# data_path: str = "./dai_docs.train.json",
prompt_type: Union[str, int] = "plain", # "plain", "instruct", "quality", "human_bot", "dai_faq"
valid_path: str = None,
# valid_path: str = "./dai_docs.valid.json",
# data_mix_in_path: str = "laion/OIG", # way too big, medium quality
data_mix_in_path: str = "0-hero/OIG-small-chip2", # high quality, 50 MB, good enough for now
data_mix_in_factor: float = 0.0, # >1: more mix-in data, <1: more of data_path data
data_mix_in_col_dict: dict = {'user': 'instruction', 'chip2': 'output'},
data_mix_in_prompt_type: str = "instruct", # just instruction->output, same as instruct
output_dir: str = None,
# LoRA checkpoint continuation
lora_weights: str = "",
# batching training hyperparams
batch_size: int = 128,
micro_batch_size: int = 4,
gradient_checkpointing=False, # unnecessary with gradient accumulation enabled
fp16=True,
# general training hyperparams
num_epochs: float = 1,
learning_rate: float = 3e-4,
# validation settings
val_set_size: int = None,
val_metrics: List[str] = [],
eval_steps: int = None, # to control eval steps via steps
eval_epochs: float = None, # to control eval steps via epochs
# lora hyperparams
lora_r: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = None,
llama_type: bool = None,
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
group_by_length: bool = False, # if True, faster, but produces an odd training loss curve
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
cutoff_len: int = 1024, # Good default, especially when have high quality non-trivial data
# torch training params
ddp: bool = True, # set to False if OOM with True, for multi-GPU model parallelism
local_files_only: bool = False, # else will download new versions, normally unwanted
resume_download: bool = True,
use_auth_token: Union[str, bool] = False, # True requires CLI did huggingface-cli login before running
warmup_steps: int = 100,
logging_steps: int = 1,
save_steps: int = None, # must be round multiple of eval_steps
add_eos_token: bool = False,
):
# allow set token directly
use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
prompt_type = str(prompt_type) # migration from integers
assert prompt_type in prompt_types
world_size = int(os.getenv("WORLD_SIZE", 1))
local_rank = int(os.getenv("LOCAL_RANK", 0))
rank = int(os.getenv("RANK", 0))
print(f"local_rank: {local_rank}")
print(f"global rank: {rank}")
gpus = max(world_size, torch.cuda.device_count())
run_id = run_id or 0
if not data_path:
raise ValueError("No data_path provided")
if not output_dir:
output_dir = f"{base_model.split('/')[-1]}.{data_path.replace('/', '')}.{num_epochs}_epochs.{get_githash() or 'nogit'}.{run_id}"
if os.path.exists(output_dir) and not resume_from_checkpoint:
raise FileExistsError(f"output_dir based on run_id {run_id} already exists. Please pick a different run_id.")
else:
if os.path.exists(output_dir) and not resume_from_checkpoint:
raise FileExistsError(f"output_dir {output_dir} already exists. Please pick a different output_dir, or specify a run_id instead.")
device_map = "auto"
if save_code:
copy_code(run_id)
if tokenizer_base_model is None:
tokenizer_base_model = base_model
if llama_type is None:
llama_type = "llama" in base_model.lower()
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
gradient_accumulation_steps = batch_size // micro_batch_size
assert gradient_accumulation_steps >= world_size, "must increase batch_size for multi-GPU"
device_map = "auto"
locals_dict = locals()
locals_print = '\n'.join(['%s: %s' % (k, v) for k, v in locals_dict.items()])
log(f"Training model with params:\n{locals_print}")
log("Command: %s\nHash: %s" % (str(' '.join(sys.argv)), get_githash()))
max_memory = None
if gpus > 1:
if ddp:
log("Distributed: data parallel")
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
else:
free_in_GB = int(min(torch.cuda.mem_get_info()) / 1024 ** 3)
max_memory = f"{free_in_GB - 2}GB"
max_memory = {i: max_memory for i in range(gpus)}
log("world_size: %d" % world_size)
log("num_gpus: %d" % gpus)
log("max mem: %s" % max_memory)
model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=False)
model = model_loader.from_pretrained(
base_model,
load_in_8bit=True,
device_map=device_map,
torch_dtype=torch.float16,
max_memory=max_memory,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
if gpus > 1:
if not ddp:
log("model parallel")
model.is_parallelizable = True
model.model_parallel = True
tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token)
tokenizer.pad_token_id = 0 # different from the eos token
# when generating, we will use the logits of right-most token to predict the next token
# so the padding should be on the left,
# e.g. see: https://huggingface.co/transformers/v4.11.3/model_doc/t5.html#inference
tokenizer.padding_side = "left" # Allow batched inference
def tokenize(prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point, add_eos=add_eos_token):
full_prompt, _, _ = generate_prompt(data_point, prompt_type, False, False)
tokenized_full_prompt = tokenize(full_prompt)
if not train_on_inputs:
user_prompt, _, _ = generate_prompt({**data_point, "output": ""}, prompt_type, False, False)
tokenized_user_prompt = tokenize(user_prompt, add_eos_token=add_eos)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
if add_eos:
user_prompt_len -= 1
# ignore_index=-100 ensures torch/tf don't include padding token id in CrossEntropyLoss
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
if "gpt-neox" not in base_model or True:
model = prepare_model_for_int8_training(model)
else:
model = prepare_model_for_int8_training(
model,
output_embedding_layer_name="embed_out", # keep output logits in float32
layer_norm_names=["layer_norm", "layernorm"], # keep all layer norms in higher precision
)
if lora_weights:
from peft import PeftModel
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
device_map=device_map,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
else:
if lora_target_modules is None:
base_model_lower = base_model.lower()
if base_model_lower in lora_mappings:
lora_target_modules_cand = [lora_mappings[base_model_lower]]
else:
lora_target_modules_cand = [["query_key_value"], ["q_proj", "v_proj"]]
else:
lora_target_modules_cand = [lora_target_modules]
for lora_target_modules in lora_target_modules_cand:
try:
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
break
except ValueError as e:
if "Target modules" in str(e) and "not found" in str(e):
continue
else:
raise
from peft import PeftModel
assert isinstance(model, PeftModel), "LoRA failed. Please provide --lora_target_modules explicitly."
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
resume_from_checkpoint = False # So the trainer won't try loading its state
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
log(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
model = set_peft_model_state_dict(model, adapters_weights)
else:
log(f"Checkpoint {checkpoint_name} not found")
print(model)
model.print_trainable_parameters() # Be more transparent about the % of trainable params.
metrics = {}
for name in supported_metrics:
if name in val_metrics:
import evaluate # Causes hang for 'python generate.py' on dual 4090 if imported early, 100% reproducible
metrics[name] = evaluate.load(name)
log("Using Validation Metrics: %s" % str(list(metrics.keys())))
log("Supported Metrics: %s" % supported_metrics)
if val_set_size is None:
if len(metrics) == 0:
val_set_size = 1000
else:
val_set_size = 100
log("Auto set val_set_size %s" % val_set_size)
elif val_set_size < 1.0 and val_set_size != 0:
raise RuntimeError("Fractional validation size not supported.")
if valid_path:
data = load_dataset("json", data_files={"train": data_path, "valid": valid_path})
else:
if "json" in data_path:
data = load_dataset("json", data_files={"train": data_path})
else:
data = load_dataset(data_path)
data = data.rename_columns(data_col_dict or {})
valid_data = None
train_data_mix_in = None
valid_data_mix_in = None
if data_mix_in_path and data_mix_in_factor > 0:
# get mix-in training/validation data - to keep model "sane"
num_rows = data["train"].num_rows
log("Loading mix-in dataset: %s" % data_mix_in_path)
if "json" in data_mix_in_path:
data_mix_in = load_dataset("json", data_files={"train": data_mix_in_path})["train"]
else:
data_mix_in = load_dataset(data_mix_in_path)["train"] # can be large
data_mix_in = data_mix_in.rename_columns(data_mix_in_col_dict or {})
# only get as much as we need to balance
valid_size = min(data_mix_in.num_rows // 2, val_set_size or 0)
train_size = max(1, min(data_mix_in.num_rows - valid_size, int(num_rows * data_mix_in_factor)))
mixin_small = data_mix_in.train_test_split(
test_size=train_size + valid_size,
shuffle=True, seed=np.random.randint(10000),
)["test"]
if valid_size:
mixin_train_test = mixin_small.train_test_split(
test_size=valid_size, shuffle=False,
)
train_data_mix_in = mixin_train_test["train"]
valid_data_mix_in = mixin_train_test["test"]
else:
train_data_mix_in = mixin_small
if "prompt_type" not in train_data_mix_in.column_names:
train_data_mix_in = train_data_mix_in.add_column(
"prompt_type",
[data_mix_in_prompt_type] * train_data_mix_in.num_rows,
)
log("Added prompt type %s to mix-in training data" % data_mix_in_prompt_type)
if valid_data_mix_in and "prompt_type" not in valid_data_mix_in.column_names:
valid_data_mix_in = valid_data_mix_in.add_column(
"prompt_type",
[data_mix_in_prompt_type] * valid_data_mix_in.num_rows,
)
log("Added prompt type %s to mix-in validation data" % data_mix_in_prompt_type)
log("Created mix-in data:\nTrain %s\nValid %s" % (train_data_mix_in, valid_data_mix_in))
# get our own training/validation data - for fine-tuning
if val_set_size > 0 and not valid_path and not data_mix_in_path:
# create valid split from train
train_val = data["train"].train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = train_val["train"]
valid_data = train_val["test"]
else:
train_data = data["train"]
if valid_path:
# use given valid split, has priority over data_mix_in_path
valid_data = data["valid"]
if "prompt_type" not in train_data.column_names:
train_data = train_data.add_column(
"prompt_type",
[prompt_type] * train_data.num_rows,
)
log("Added prompt type %s to training data" % prompt_type)
if valid_data and "prompt_type" not in valid_data.column_names:
valid_data = valid_data.add_column(
"prompt_type",
[prompt_type] * valid_data.num_rows,
)
log("Added prompt type %s to validation data" % prompt_type)
assert train_data is not None
# shuffle and tokenize data
if train_data_mix_in:
train_data = concatenate_datasets([train_data, train_data_mix_in])
train_data = train_data.shuffle().map(generate_and_tokenize_prompt, num_proc=os.cpu_count() // torch.cuda.device_count())
train_set_size = len(train_data)
if valid_data and valid_data_mix_in:
valid_data = concatenate_datasets([valid_data, valid_data_mix_in])
elif valid_data_mix_in:
valid_data = valid_data_mix_in
if valid_data:
valid_data = valid_data.shuffle().map(generate_and_tokenize_prompt, num_proc=os.cpu_count() // torch.cuda.device_count())
val_set_size = len(valid_data)
else:
val_set_size = 0
log("Final fine-tuning data:\nTrain %s\nValid %s" % (train_data, valid_data))
sample_row_dict = train_data[:1]
del sample_row_dict['input_ids']
del sample_row_dict['attention_mask']
del sample_row_dict['labels']
log("Sample input: %s" % sample_row_dict)
if neptune_run:
neptune_callback = NeptuneCallback(run=neptune_run)
callbacks = [neptune_callback]
else:
from transformers.integrations import TensorBoardCallback, is_tensorboard_available
if is_tensorboard_available:
# tensorboard --logdir=runs/
from torch.utils.tensorboard import SummaryWriter
tb_writer = SummaryWriter()
callbacks = [TensorBoardCallback(tb_writer=tb_writer)]
else:
callbacks = []
expected_steps = (train_set_size * num_epochs) // batch_size
if eval_steps is None and eval_epochs is None:
# 20 evaluations for a run
eval_steps = max(1, int(expected_steps / 20))
log("Auto set eval_steps to %s out of %s total training steps" % (eval_steps, expected_steps))
elif eval_steps is None and eval_epochs is not None:
eval_steps = max(1, int(expected_steps * eval_epochs / num_epochs))
log("Auto converted eval_epochs=%s to eval_steps %s"
" out of %s total training steps" % (eval_epochs, eval_steps, expected_steps))
if save_steps is None:
save_steps = eval_steps
log("Auto step save_steps to %s" % save_steps)
elif save_steps > eval_steps:
# save steps must be round multiple of eval_steps
save_steps0 = save_steps
save_steps = max(1, (save_steps//eval_steps)) * eval_steps
if save_steps0 != save_steps:
log("Auto converted save_steps from %s to %s" % (save_steps0, save_steps))
def compute_metrics(eval_preds):
# e.g. see: https://huggingface.co/docs/transformers/v4.25.1/en/tasks/translation#evaluate
inputs = eval_preds.inputs
label_ids = eval_preds.label_ids
predictions = eval_preds.predictions
#inputs = np.where(inputs != -100, inputs, tokenizer.pad_token_id)
#decoded_inputs = tokenizer.batch_decode(inputs, skip_special_tokens=True)
#decoded_inputs = [pred.strip() for pred in decoded_inputs]
label_ids = np.where(label_ids != -100, label_ids, tokenizer.pad_token_id)
# tokenizer behavior like generate time
decoded_labels = tokenizer.batch_decode(label_ids, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
decoded_labels = [pred.strip() for pred in decoded_labels]
predictions = np.argmax(predictions, -1)
predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
# tokenizer behavior like generate time
decoded_predictions = tokenizer.batch_decode(predictions, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
decoded_predictions = [pred.strip() for pred in decoded_predictions]
result = {}
for metric in metrics.values():
result1 = metric.compute(predictions=decoded_predictions, references=decoded_labels)
# get rid of lists, for precision etc., for now
numeric_results = {k: v for k, v in result1.items() if isinstance(v, (int, float))}
result.update(numeric_results)
return result
# the callback that computes metrics of interest
if val_metrics:
trainer_kwargs = dict(compute_metrics=compute_metrics)
else:
trainer_kwargs = dict()
trainer = transformers.Trainer(
model=model,
tokenizer=tokenizer,
train_dataset=train_data,
eval_dataset=valid_data,
# NOTE: CausalLM is not supporting Seq2SeqTrainingArguments arguments, but not incompatible
args=transformers.Seq2SeqTrainingArguments(
per_device_train_batch_size=micro_batch_size,
per_device_eval_batch_size=1,
eval_accumulation_steps=10,
# predict_with_generate=True, # SEQ2SEQ only
include_inputs_for_metrics=True,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=warmup_steps,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
gradient_checkpointing=gradient_checkpointing,
fp16=fp16,
# cosnider 8-bit adam: https://huggingface.co/docs/transformers/v4.18.0/en/performance#8bit-adam
optim="adamw_torch", # consider "adafactor" to save memory
logging_steps=logging_steps,
logging_strategy="steps",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=eval_steps if val_set_size > 0 else None,
save_steps=save_steps,
output_dir=output_dir,
save_total_limit=3,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
#fsdp="shard_grad_op auto_wrap" if gpus > 1 and not ddp else None,
#fsdp_min_num_params=20000 if gpus > 1 and not ddp else None,
report_to='tensorboard' if not neptune_run else 'neptune',
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
callbacks=callbacks,
**trainer_kwargs,
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
# WIP (not generally replacing layers until pytorch 2.1)
torch.backends.cuda.enable_flash_sdp(True)
if gpus > 1 and not ddp:
assert trainer.is_model_parallel
else:
assert not trainer.is_model_parallel
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
model.save_pretrained(output_dir)
log("\n If there's a warning about missing keys above, please disregard :)")
def get_loaders(llama_type, model_name, reward_type):
# NOTE: Some models need specific new prompt_type
# E.g. t5_xxl_true_nli_mixture has input format: "premise: PREMISE_TEXT hypothesis: HYPOTHESIS_TEXT".)
if llama_type:
from transformers import LlamaForCausalLM, LlamaTokenizer
model_loader = LlamaForCausalLM
tokenizer_loader = LlamaTokenizer
elif 'gpt2' in model_name.lower():
from transformers import GPT2LMHeadModel, GPT2Tokenizer
return GPT2LMHeadModel, GPT2Tokenizer
elif 'mbart-' in model_name.lower():
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
return MBartForConditionalGeneration, MBart50TokenizerFast
elif 't5' == model_name.lower() or \
't5-' in model_name.lower() or \
'flan-' in model_name.lower():
from transformers import AutoTokenizer, T5ForConditionalGeneration
return T5ForConditionalGeneration, AutoTokenizer
elif 'bigbird' in model_name:
from transformers import BigBirdPegasusForConditionalGeneration, AutoTokenizer
return BigBirdPegasusForConditionalGeneration, AutoTokenizer
elif 'bart-large-cnn-samsum' in model_name or 'flan-t5-base-samsum' in model_name:
from transformers import pipeline
return pipeline, "summarization"
elif reward_type or 'OpenAssistant/reward-model'.lower() in model_name.lower():
from transformers import AutoModelForSequenceClassification, AutoTokenizer
return AutoModelForSequenceClassification, AutoTokenizer
else:
from transformers import AutoTokenizer, AutoModelForCausalLM
model_loader = AutoModelForCausalLM
tokenizer_loader = AutoTokenizer
return model_loader, tokenizer_loader
def get_githash():
try:
githash = subprocess.run(['git', 'rev-parse', 'HEAD'], stdout=subprocess.PIPE).stdout.decode('utf-8')[0:-1]
except:
githash = ''
return githash
def copy_code(run_id):
"""
copy code to track changes
:param run_id:
:return:
"""
rnd_num = str(random.randint(0, 2 ** 31))
run_id = 'run_' + str(run_id)
os.makedirs(run_id, exist_ok=True)
me_full = os.path.join(pathlib.Path(__file__).parent.resolve(), __file__)
me_file = os.path.basename(__file__)
new_me = os.path.join(run_id, me_file + '_' + get_githash())
if os.path.isfile(new_me):
new_me = os.path.join(run_id, me_file + '_' + get_githash() + '_' + rnd_num)
shutil.copy(me_full, new_me)
else:
shutil.copy(me_full, new_me)
def get_prompt(prompt_type, chat, context, reduced):
if prompt_type in [-1, "-1", "plain"]:
promptA = promptB = PreInstruct = PreInput = PreResponse = ''
terminate_response = []
elif prompt_type == 'simple_instruct':
promptA = promptB = PreInstruct = PreInput = PreResponse = None
terminate_response = []
elif prompt_type in [0, "0", "instruct"] or prompt_type in [7, "7", "instruct_with_end"]:
promptA = 'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n' if not (chat and reduced) else ''
promptB = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n' if not (chat and reduced) else ''
PreInstruct = """
### Instruction:
"""
PreInput = """
### Input:
"""
PreResponse = """
### Response:
"""
if prompt_type in [7, "7", "instruct_with_end"]:
terminate_response = ['### End']
else:
terminate_response = None
elif prompt_type in [1, "1", "quality"]:
promptA = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction as applied on the Input.\n' if not (chat and reduced) else ''
promptB = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction.\n' if not (chat and reduced) else ''
PreInstruct = """
### Instruction:
"""
PreInput = """
### Input:
"""
PreResponse = """
### Response:
"""
terminate_response = None
elif prompt_type in [2, "2", "human_bot", 9, "9", "human_bot_orig"]:
if reduced or context or prompt_type in [2, "2", "human_bot"]:
preprompt = ''
else:
cur_date = time.strftime('%Y-%m-%d')
cur_time = time.strftime('%H:%M:%S %p %Z')
PRE_PROMPT = """\
Current Date: {}
Current Time: {}
"""
preprompt = PRE_PROMPT.format(cur_date, cur_time)
start = human
promptB = promptA = '%s%s ' % (preprompt, start)
PreInstruct = ""
PreInput = None
PreResponse = bot
terminate_response = [start, PreResponse]
elif prompt_type in [3, "3", "dai_faq"]:
promptA = ''
promptB = 'Answer the following Driverless AI question.\n'
PreInstruct = """
### Driverless AI frequently asked question:
"""
PreInput = None
PreResponse = """
### Driverless AI documentation answer:
"""
terminate_response = ['\n\n']
elif prompt_type in [5, "5", "summarize"]:
promptA = promptB = PreInput = ''
PreInstruct = '## Main Text\n\n'
PreResponse = '\n\n## Summary\n\n'
terminate_response = None
elif prompt_type in [6, "6", "instruct_vicuna"]:
promptA = promptB = "A chat between a curious human and an artificial intelligence assistant. " \
"The assistant gives helpful, detailed, and polite answers to the human's questions." if not (chat and reduced) else ''
PreInstruct = """
### Human:
"""
PreInput = None
PreResponse = """
### Assistant:
"""
terminate_response = ['### Human:'] # but only allow terminate after prompt is found correctly, else can't terminate
else:
raise RuntimeError("No such prompt_type=%s" % prompt_type)
return promptA, promptB, PreInstruct, PreInput, PreResponse, terminate_response
def generate_prompt(data_point, prompt_type, chat, reduced):
context = data_point.get('context')
if context is None:
context = ''
instruction = data_point.get('instruction')
input = data_point.get('input')
output = data_point.get('output')
prompt_type = data_point.get('prompt_type', prompt_type)
assert prompt_type in prompt_types, "Bad prompt type: %s" % prompt_type
promptA, promptB, PreInstruct, PreInput, PreResponse, terminate_response = get_prompt(prompt_type, chat, context, reduced)
prompt = context
if input and promptA:
prompt += f"""{promptA}"""
elif promptB:
prompt += f"""{promptB}"""
if instruction and PreInstruct is not None and input and PreInput is not None:
prompt += f"""{PreInstruct}{instruction}{PreInput}{input}"""
prompt = inject_newline(prompt_type, prompt)
elif instruction and input and PreInstruct is None and PreInput is not None:
prompt += f"""{PreInput}{instruction}
{input}"""
prompt = inject_newline(prompt_type, prompt)
elif input and instruction and PreInput is None and PreInstruct is not None:
prompt += f"""{PreInstruct}{instruction}
{input}"""
prompt = inject_newline(prompt_type, prompt)
elif instruction and PreInstruct is not None:
prompt += f"""{PreInstruct}{instruction}"""
prompt = inject_newline(prompt_type, prompt)
elif input and PreInput is not None:
prompt += f"""{PreInput}{input}"""
prompt = inject_newline(prompt_type, prompt)
elif input and instruction and PreInput is not None:
prompt += f"""{PreInput}{instruction}{input}"""
prompt = inject_newline(prompt_type, prompt)
elif input and instruction and PreInstruct is not None:
prompt += f"""{PreInstruct}{instruction}{input}"""
prompt = inject_newline(prompt_type, prompt)
elif input and instruction:
# i.e. for simple_instruct
prompt += f"""{instruction}: {input}"""
prompt = inject_newline(prompt_type, prompt)
elif input:
prompt += f"""{input}"""
prompt = inject_newline(prompt_type, prompt)
elif instruction:
prompt += f"""{instruction}"""
prompt = inject_newline(prompt_type, prompt)
if PreResponse is not None:
prompt += f"""{PreResponse}"""
pre_response = PreResponse # Don't use strip
else:
pre_response = ''
if output:
prompt += f"""{output}"""
return prompt, pre_response, terminate_response
def inject_newline(prompt_type, prompt):
if prompt_type not in [-1, '-1', 'plain', 'simple_instruct']:
# only add new line if structured prompt, while 'plain' is just generation of next tokens from input
prompt += '\n'
return prompt
example_data_point0 = dict(instruction="Summarize",
input="Ducks eat seeds by the lake, then swim in the lake where fish eat small animals.",
output="Ducks eat and swim at the lake.")
example_data_point1 = dict(instruction="Who is smarter, Einstein or Newton?",
output="Einstein.")
example_data_point2 = dict(input="Who is smarter, Einstein or Newton?",
output="Einstein.")
example_data_points = [example_data_point0, example_data_point1, example_data_point2]
def test_train_prompt(prompt_type='instruct', data_point=0):
example_data_point = example_data_points[data_point]
return generate_prompt(example_data_point, prompt_type, False, False)
def test_debug():
fire.Fire(train)
if __name__ == "__main__":
CONFIG = "NCCL_P2P_LEVEL=LOC WORLD_SIZE=5 torchrun --nnodes=5 --master_addr=10.10.10.2 --master_port=1111 --nproc_per_node=1"
CMD = "finetune.py --data_path=config.json --num_epochs=1 --base_model=decapoda-research/llama-13b-hf"
log(f"""
Example runs on 4 GPUs:
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='decapoda-research/llama-7b-hf' --data_path=data/config.json --run_id=0 &> 0.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='decapoda-research/llama-30b-hf' --data_path=data/config.json --batch_size=16 --micro_batch_size=1 --run_id=1 --save_code=True &> 1.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='EleutherAI/gpt-j-6B' --data_path=data/config.json --run_id=2 &> 2.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='EleutherAI/gpt-neox-20b' --data_path=data/config.json --run_id=8 --batch_size=16 --micro_batch_size=4 &> 8.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --data_path=data/config.json --prompt_type='dai_faq' --run_id=13 --batch_size=16 --micro_batch_size=4 --num_epochs=100 --val_set_size=0 data_mix_in_path='' &> 13.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --data_path=data/config.json --run_id=28 --batch_size=16 --micro_batch_size=4 --num_epochs=8 --val_set_size=0 --data_mix_in_factor=0.1 --data_mix_in_prompt_type='human_bot' --save_code=True --cutoff_len=512 &> 28.log
All metrics:
CUDA_VISIBLE_DEVICES= finetune.py --data_mix_in_factor=0 --eval_steps=100 --warmup_steps=2 --val_set_size=100 --val_metrics="['bleu', 'rouge', 'sacrebleu', 'meteor']"
# Fine-tune 20B on 24GB GPUs across 3 nodes with 3+2+2 GPUs
rippa>
NCCL_P2P_LEVEL=LOC WORLD_SIZE=7 CUDA_VISIBLE_DEVICES="0,1,2" torchrun --node_rank 0 --nproc_per_node=3 --master_port=1234 --nnodes=3 --master_addr=10.10.10.2 finetune.py --data_path=merged_shuffled_OIG_87f6a1e788.json --micro_batch_size=1 --batch_size=7 --cutoff_len=512 --run_id=17 &>log.17.rank0
ova>
NCCL_P2P_LEVEL=LOC WORLD_SIZE=7 CUDA_VISIBLE_DEVICES="0,1" torchrun --node_rank 1 --nproc_per_node=2 --master_port=1234 --nnodes=3 --master_addr=10.10.10.2 finetune.py --data_path=merged_shuffled_OIG_87f6a1e788.json --micro_batch_size=1 --batch_size=7 --cutoff_len=512 --run_id=17 &>log.17.rank1
timemachine>
NCCL_P2P_LEVEL=LOC WORLD_SIZE=7 CUDA_VISIBLE_DEVICES="0,1" torchrun --node_rank 2 --nproc_per_node=2 --master_port=1234 --nnodes=3 --master_addr=10.10.10.2 finetune.py --data_path=merged_shuffled_OIG_87f6a1e788.json --micro_batch_size=1 --batch_size=7 --cutoff_len=512 --run_id=17 &>log.17.rank2
""", flush=True)
if os.environ.get("LOCAL_RANK") is None:
# then not using torchrun, so can't do distributed, ensure CVD set
assert os.environ.get("CUDA_VISIBLE_DEVICES") is not None, "Run python script using: torchrun finetune.py OR set CUDA_VISIBLE_DEVICES to single GPU"
fire.Fire(train)