diff --git "a/gradio_runner.py" "b/gradio_runner.py"
--- "a/gradio_runner.py"
+++ "b/gradio_runner.py"
@@ -1,16 +1,25 @@
import copy
import functools
import inspect
+import itertools
import json
import os
+import pprint
import random
+import shutil
import sys
+import time
import traceback
+import typing
import uuid
import filelock
import pandas as pd
import requests
import tabulate
+from iterators import TimeoutIterator
+
+from gradio_utils.css import get_css
+from gradio_utils.prompt_form import make_prompt_form, make_chatbots
# This is a hack to prevent Gradio from phoning home when it gets imported
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
@@ -28,17 +37,55 @@ import gradio as gr
requests.get = original_get
-from gradio_themes import H2oTheme, SoftTheme, get_h2o_title, get_simple_title, get_dark_js
-from prompter import Prompter, \
- prompt_type_to_model_name, prompt_types_strings, inv_prompt_type_to_model_lower, generate_prompt, non_hf_types
+
+def fix_pydantic_duplicate_validators_error():
+ try:
+ from pydantic import class_validators
+
+ class_validators.in_ipython = lambda: True # type: ignore[attr-defined]
+ except ImportError:
+ pass
+
+
+fix_pydantic_duplicate_validators_error()
+
+from enums import DocumentChoices, no_model_str, no_lora_str, no_server_str, LangChainMode
+from gradio_themes import H2oTheme, SoftTheme, get_h2o_title, get_simple_title, get_dark_js, spacing_xsm, radius_xsm, \
+ text_xsm
+from prompter import prompt_type_to_model_name, prompt_types_strings, inv_prompt_type_to_model_lower, non_hf_types, \
+ get_prompt
from utils import get_githash, flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print, \
- ping, get_short_name, get_url, makedirs, get_kwargs
+ ping, get_short_name, get_url, makedirs, get_kwargs, remove, system_info, ping_gpu
from generate import get_model, languages_covered, evaluate, eval_func_param_names, score_qa, langchain_modes, \
- inputs_kwargs_list, get_cutoffs, scratch_base_dir
+ inputs_kwargs_list, scratch_base_dir, evaluate_from_str, no_default_param_names, \
+ eval_func_param_names_defaults, get_max_max_new_tokens, get_minmax_top_k_docs, history_to_context
from apscheduler.schedulers.background import BackgroundScheduler
+def fix_text_for_gradio(text, fix_new_lines=False, fix_latex_dollars=True):
+ if fix_latex_dollars:
+ ts = text.split('```')
+ for parti, part in enumerate(ts):
+ inside = parti % 2 == 1
+ if not inside:
+ ts[parti] = ts[parti].replace('$', '﹩')
+ text = '```'.join(ts)
+
+ if fix_new_lines:
+ # let Gradio handle code, since got improved recently
+ ## FIXME: below conflicts with Gradio, but need to see if can handle multiple \n\n\n etc. properly as is.
+ # ensure good visually, else markdown ignores multiple \n
+ # handle code blocks
+ ts = text.split('```')
+ for parti, part in enumerate(ts):
+ inside = parti % 2 == 1
+ if not inside:
+ ts[parti] = ts[parti].replace('\n', '
')
+ text = '```'.join(ts)
+ return text
+
+
def go_gradio(**kwargs):
allow_api = kwargs['allow_api']
is_public = kwargs['is_public']
@@ -47,6 +94,7 @@ def go_gradio(**kwargs):
n_gpus = kwargs['n_gpus']
admin_pass = kwargs['admin_pass']
model_state0 = kwargs['model_state0']
+ model_states = kwargs['model_states']
score_model_state0 = kwargs['score_model_state0']
dbs = kwargs['dbs']
db_type = kwargs['db_type']
@@ -73,17 +121,9 @@ def go_gradio(**kwargs):
else:
instruction_label_nochat = "Instruction (Shift-Enter or push Submit to send message," \
" use Enter for multiple input lines)"
- if kwargs['input_lines'] > 1:
- instruction_label = "You (Shift-Enter or push Submit to send message, use Enter for multiple input lines)"
- else:
- instruction_label = "You (Enter or push Submit to send message, shift-enter for more lines)"
title = 'h2oGPT'
- if 'h2ogpt-research' in kwargs['base_model']:
- title += " [Research demonstration]"
- more_info = """For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O-LLMStudio](https://github.com/h2oai/h2o-llmstudio)
"""
- if is_public:
- more_info += """"""
+ more_info = """h2oGPT H2O LLM Studio
🤗 Models"""
if kwargs['verbose']:
description = f"""Model {kwargs['base_model']} Instruct dataset.
For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
@@ -92,10 +132,10 @@ def go_gradio(**kwargs):
"""
else:
description = more_info
- description += "If this host is busy, try [12B](https://gpt.h2o.ai), [Falcon 40B](http://falcon.h2o.ai), [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) or [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)
"
- description += """
By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/docs/tos.md)
""" + description_bottom = "If this host is busy, try [LLaMa 65B](https://llama.h2o.ai), [Falcon 40B](https://gpt.h2o.ai), [Falcon 40B](http://falcon.h2o.ai), [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) or [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/docs/tos.md)
""" if is_hf: - description += '''''' + description_bottom += '''''' if kwargs['verbose']: task_info_md = f""" @@ -103,50 +143,7 @@ def go_gradio(**kwargs): else: task_info_md = '' - if kwargs['h2ocolors']: - css_code = """footer {visibility: hidden;} - body{background:linear-gradient(#f5f5f5,#e5e5e5);} - body.dark{background:linear-gradient(#000000,#0d0d0d);} - """ - else: - css_code = """footer {visibility: hidden}""" - css_code += """ -@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600&display=swap'); -body.dark{#warning {background-color: #555555};} -#small_btn { - margin: 0.6em 0em 0.55em 0; - max-width: 20em; - min-width: 5em !important; - height: 5em; - font-size: 14px !important -}""" - - if kwargs['gradio_avoid_processing_markdown']: - from gradio_client import utils as client_utils - from gradio.components import Chatbot - - # gradio has issue with taking too long to process input/output for markdown etc. - # Avoid for now, allow raw html to render, good enough for chatbot. - def _postprocess_chat_messages(self, chat_message: str): - if chat_message is None: - return None - elif isinstance(chat_message, (tuple, list)): - filepath = chat_message[0] - mime_type = client_utils.get_mimetype(filepath) - filepath = self.make_temp_copy_if_needed(filepath) - return { - "name": filepath, - "mime_type": mime_type, - "alt_text": chat_message[1] if len(chat_message) > 1 else None, - "data": None, # These last two fields are filled in by the frontend - "is_file": True, - } - elif isinstance(chat_message, str): - return chat_message - else: - raise ValueError(f"Invalid message for Chatbot component: {chat_message}") - - Chatbot._postprocess_chat_messages = _postprocess_chat_messages + css_code = get_css(kwargs) if kwargs['gradio_offline_level'] >= 0: # avoid GoogleFont that pulls from internet @@ -159,6 +156,17 @@ body.dark{#warning {background-color: #555555};} font_mono=('IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace')) else: theme_kwargs = dict() + if kwargs['gradio_size'] == 'xsmall': + theme_kwargs.update(dict(spacing_size=spacing_xsm, text_size=text_xsm, radius_size=radius_xsm)) + elif kwargs['gradio_size'] == 'small': + theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_sm, text_size=gr.themes.sizes.text_sm, + radius_size=gr.themes.sizes.spacing_sm)) + elif kwargs['gradio_size'] == 'large': + theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_lg, text_size=gr.themes.sizes.text_lg), + radius_size=gr.themes.sizes.spacing_lg) + elif kwargs['gradio_size'] == 'medium': + theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_md, text_size=gr.themes.sizes.text_md, + radius_size=gr.themes.sizes.spacing_md)) theme = H2oTheme(**theme_kwargs) if kwargs['h2ocolors'] else SoftTheme(**theme_kwargs) demo = gr.Blocks(theme=theme, css=css_code, title="h2oGPT", analytics_enabled=False) @@ -166,24 +174,36 @@ body.dark{#warning {background-color: #555555};} model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options'] if kwargs['base_model'].strip() not in model_options: - lora_options = [kwargs['base_model'].strip()] + model_options + model_options = [kwargs['base_model'].strip()] + model_options lora_options = kwargs['extra_lora_options'] if kwargs['lora_weights'].strip() not in lora_options: lora_options = [kwargs['lora_weights'].strip()] + lora_options + server_options = kwargs['extra_server_options'] + if kwargs['inference_server'].strip() not in server_options: + server_options = [kwargs['inference_server'].strip()] + server_options + if os.getenv('OPENAI_API_KEY'): + if 'openai_chat' not in server_options: + server_options += ['openai_chat'] + if 'openai' not in server_options: + server_options += ['openai'] + # always add in no lora case # add fake space so doesn't go away in gradio dropdown - no_lora_str = no_model_str = '[None/Remove]' - lora_options = [no_lora_str] + kwargs['extra_lora_options'] # FIXME: why double? + model_options = [no_model_str] + model_options + lora_options = [no_lora_str] + lora_options + server_options = [no_server_str] + server_options # always add in no model case so can free memory # add fake space so doesn't go away in gradio dropdown - model_options = [no_model_str] + model_options # transcribe, will be detranscribed before use by evaluate() + if not kwargs['base_model'].strip(): + kwargs['base_model'] = no_model_str + if not kwargs['lora_weights'].strip(): kwargs['lora_weights'] = no_lora_str - if not kwargs['base_model'].strip(): - kwargs['base_model'] = no_model_str + if not kwargs['inference_server'].strip(): + kwargs['inference_server'] = no_server_str # transcribe for gradio kwargs['gpu_id'] = str(kwargs['gpu_id']) @@ -193,40 +213,62 @@ body.dark{#warning {background-color: #555555};} 'base_model') else no_model_msg output_label0_model2 = no_model_msg + default_kwargs = {k: kwargs[k] for k in eval_func_param_names_defaults} + for k in no_default_param_names: + default_kwargs[k] = '' + + def dummy_fun(x): + # need dummy function to block new input from being sent until output is done, + # else gets input_list at time of submit that is old, and shows up as truncated in chatbot + return x + with demo: # avoid actual model/tokenizer here or anything that would be bad to deepcopy # https://github.com/gradio-app/gradio/issues/3558 - model_state = gr.State(['model', 'tokenizer', kwargs['device'], kwargs['base_model']]) - model_state2 = gr.State([None, None, None, None]) + model_state = gr.State( + dict(model='model', tokenizer='tokenizer', device=kwargs['device'], + base_model=kwargs['base_model'], + tokenizer_base_model=kwargs['tokenizer_base_model'], + lora_weights=kwargs['lora_weights'], + inference_server=kwargs['inference_server'], + prompt_type=kwargs['prompt_type'], + prompt_dict=kwargs['prompt_dict'], + ) + ) + model_state2 = gr.State(kwargs['model_state_none'].copy()) model_options_state = gr.State([model_options]) lora_options_state = gr.State([lora_options]) + server_options_state = gr.State([server_options]) my_db_state = gr.State([None, None]) chat_state = gr.State({}) # make user default first and default choice, dedup - docs_state00 = kwargs['document_choice'] + ['All', 'Only', 'None'] + docs_state00 = kwargs['document_choice'] + [x.name for x in list(DocumentChoices)] docs_state0 = [] [docs_state0.append(x) for x in docs_state00 if x not in docs_state0] docs_state = gr.State(docs_state0) # first is chosen as default gr.Markdown(f""" - {get_h2o_title(title) if kwargs['h2ocolors'] else get_simple_title(title)} - - {description} - {task_info_md} + {get_h2o_title(title, description) if kwargs['h2ocolors'] else get_simple_title(title, description)} """) - if is_hf: - gr.HTML( - ) # go button visible if base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0'] go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary") + + nas = ' '.join(['NA'] * len(kwargs['model_states'])) + res_value = "Response Score: NA" if not kwargs[ + 'model_lock'] else "Response Scores: %s" % nas + normal_block = gr.Row(visible=not base_wanted) with normal_block: with gr.Tabs(): with gr.Row(): col_nochat = gr.Column(visible=not kwargs['chat']) with col_nochat: # FIXME: for model comparison, and check rest - text_output_nochat = gr.Textbox(lines=5, label=output_label0).style(show_copy_button=True) + if kwargs['langchain_mode'] == 'Disabled': + text_output_nochat = gr.Textbox(lines=5, label=output_label0, show_copy_button=True) + else: + # text looks a bit worse, but HTML links work + text_output_nochat = gr.HTML(label=output_label0) instruction_nochat = gr.Textbox( lines=kwargs['input_lines'], label=instruction_label_nochat, @@ -236,72 +278,31 @@ body.dark{#warning {background-color: #555555};} placeholder=kwargs['placeholder_input']) submit_nochat = gr.Button("Submit") flag_btn_nochat = gr.Button("Flag") - if not kwargs['auto_score']: - with gr.Column(visible=kwargs['score_model']): - score_btn_nochat = gr.Button("Score last prompt & response") - score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) - else: - with gr.Column(visible=kwargs['score_model']): - score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) + with gr.Column(visible=kwargs['score_model']): + score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) + col_chat = gr.Column(visible=kwargs['chat']) with col_chat: - with gr.Row(): - text_output = gr.Chatbot(label=output_label0).style(height=kwargs['height'] or 400) - text_output2 = gr.Chatbot(label=output_label0_model2, visible=False).style( - height=kwargs['height'] or 400) - with gr.Row(): - with gr.Column(scale=50): - instruction = gr.Textbox( - lines=kwargs['input_lines'], - label=instruction_label, - placeholder=kwargs['placeholder_instruction'], - ) - with gr.Row(): - submit = gr.Button(value='Submit').style(full_width=False, size='sm') - stop_btn = gr.Button(value="Stop").style(full_width=False, size='sm') + instruction, submit, stop_btn = make_prompt_form(kwargs) + text_output, text_output2, text_outputs = make_chatbots(output_label0, output_label0_model2, + **kwargs) + with gr.Row(): clear = gr.Button("Save Chat / New Chat") flag_btn = gr.Button("Flag") - if not kwargs['auto_score']: # FIXME: For checkbox model2 - with gr.Column(visible=kwargs['score_model']): - with gr.Row(): - score_btn = gr.Button("Score last prompt & response").style( - full_width=False, size='sm') - score_text = gr.Textbox("Response Score: NA", show_label=False) - score_res2 = gr.Row(visible=False) - with score_res2: - score_btn2 = gr.Button("Score last prompt & response 2").style( - full_width=False, size='sm') - score_text2 = gr.Textbox("Response Score2: NA", show_label=False) - else: - with gr.Column(visible=kwargs['score_model']): - score_text = gr.Textbox("Response Score: NA", show_label=False) - score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False) - retry = gr.Button("Regenerate") + with gr.Column(visible=kwargs['score_model']): + score_text = gr.Textbox(res_value, + show_label=False, + visible=True) + score_text2 = gr.Textbox("Response Score2: NA", show_label=False, + visible=False and not kwargs['model_lock']) + retry_btn = gr.Button("Regenerate") undo = gr.Button("Undo") - with gr.TabItem("Chat"): - with gr.Row(): - if 'mbart-' in kwargs['model_lower']: - src_lang = gr.Dropdown(list(languages_covered().keys()), - value=kwargs['src_lang'], - label="Input Language") - tgt_lang = gr.Dropdown(list(languages_covered().keys()), - value=kwargs['tgt_lang'], - label="Output Language") - radio_chats = gr.Radio(value=None, label="Saved Chats", visible=True, interactive=True, - type='value') - with gr.Row(): - clear_chat_btn = gr.Button(value="Clear Chat", visible=True).style(size='sm') - export_chats_btn = gr.Button(value="Export Chats to Download").style(size='sm') - remove_chat_btn = gr.Button(value="Remove Selected Chat", visible=True).style(size='sm') - add_to_chats_btn = gr.Button("Import Chats from Upload").style(size='sm') - with gr.Row(): - chats_file = gr.File(interactive=False, label="Download Exported Chats") - chatsup_output = gr.File(label="Upload Chat File(s)", - file_types=['.json'], - file_count='multiple', - elem_id="warning", elem_classes="feedback") - with gr.TabItem("Data Source"): + submit_nochat_api = gr.Button("Submit nochat API", visible=False) + inputs_dict_str = gr.Textbox(label='API input for nochat', show_label=False, visible=False) + text_output_nochat_api = gr.Textbox(lines=5, label='API nochat output', visible=False, + show_copy_button=True) + with gr.TabItem("Documents"): langchain_readme = get_url('https://github.com/h2oai/h2ogpt/blob/main/docs/README_LangChain.md', from_str=True) gr.HTML(value=f"""LangChain Support Disabled
@@ -341,12 +342,9 @@ body.dark{#warning {background-color: #555555};}
multiselect=True,
)
with gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list):
- get_sources_btn = gr.Button(value="Get Sources",
- ).style(full_width=False, size='sm')
- show_sources_btn = gr.Button(value="Show Sources",
- ).style(full_width=False, size='sm')
- refresh_sources_btn = gr.Button(value="Refresh Sources",
- ).style(full_width=False, size='sm')
+ get_sources_btn = gr.Button(value="Get Sources", scale=0, size='sm')
+ show_sources_btn = gr.Button(value="Show Sources", scale=0, size='sm')
+ refresh_sources_btn = gr.Button(value="Refresh Sources", scale=0, size='sm')
# import control
if kwargs['langchain_mode'] != 'Disabled':
@@ -355,8 +353,8 @@ body.dark{#warning {background-color: #555555};}
have_arxiv = False
file_types = []
- upload_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload).style(
- equal_height=False)
+ upload_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload,
+ equal_height=False)
with upload_row:
with gr.Column():
file_types_str = '[' + ' '.join(file_types) + ']'
@@ -366,38 +364,50 @@ body.dark{#warning {background-color: #555555};}
elem_id="warning", elem_classes="feedback")
with gr.Row():
add_to_shared_db_btn = gr.Button("Add File(s) to UserData",
- visible=allow_upload_to_user_data, elem_id='small_btn')
+ visible=allow_upload_to_user_data,
+ elem_id='small_btn')
add_to_my_db_btn = gr.Button("Add File(s) to Scratch MyData",
- visible=allow_upload_to_my_data,
+ visible=allow_upload_to_my_data and
+ allow_upload_to_user_data,
elem_id='small_btn' if allow_upload_to_user_data else None,
- ).style(
- size='sm' if not allow_upload_to_user_data else None)
+ size='sm' if not allow_upload_to_user_data else None)
with gr.Column(
visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_url_upload):
url_label = 'URL (http/https) or ArXiv:' if have_arxiv else 'URL (http/https)'
- url_text = gr.Textbox(label=url_label, interactive=True)
+ url_text = gr.Textbox(label=url_label,
+ placeholder="Click Add to Submit" if
+ allow_upload_to_my_data and
+ allow_upload_to_user_data else
+ "Enter to Submit",
+ max_lines=1,
+ interactive=True)
with gr.Row():
url_user_btn = gr.Button(value='Add URL content to Shared UserData',
- visible=allow_upload_to_user_data, elem_id='small_btn')
+ visible=allow_upload_to_user_data and allow_upload_to_my_data,
+ elem_id='small_btn')
url_my_btn = gr.Button(value='Add URL content to Scratch MyData',
- visible=allow_upload_to_my_data,
+ visible=allow_upload_to_my_data and allow_upload_to_user_data,
elem_id='small_btn' if allow_upload_to_user_data else None,
- ).style(size='sm' if not allow_upload_to_user_data else None)
+ size='sm' if not allow_upload_to_user_data else None)
with gr.Column(
visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_text_upload):
- user_text_text = gr.Textbox(label='Paste Text [Shift-Enter more lines]', interactive=True)
+ user_text_text = gr.Textbox(label='Paste Text [Shift-Enter more lines]',
+ placeholder="Click Add to Submit" if
+ allow_upload_to_my_data and
+ allow_upload_to_user_data else
+ "Enter to Submit, Shift-Enter for more lines",
+ interactive=True)
with gr.Row():
user_text_user_btn = gr.Button(value='Add Text to Shared UserData',
- visible=allow_upload_to_user_data,
+ visible=allow_upload_to_user_data and allow_upload_to_my_data,
elem_id='small_btn')
user_text_my_btn = gr.Button(value='Add Text to Scratch MyData',
- visible=allow_upload_to_my_data,
+ visible=allow_upload_to_my_data and allow_upload_to_user_data,
elem_id='small_btn' if allow_upload_to_user_data else None,
- ).style(
- size='sm' if not allow_upload_to_user_data else None)
+ size='sm' if not allow_upload_to_user_data else None)
with gr.Column(visible=False):
# WIP:
- with gr.Row(visible=False).style(equal_height=False):
+ with gr.Row(visible=False, equal_height=False):
github_textbox = gr.Textbox(label="Github URL")
with gr.Row(visible=True):
github_shared_btn = gr.Button(value="Add Github to Shared UserData",
@@ -405,18 +415,37 @@ body.dark{#warning {background-color: #555555};}
elem_id='small_btn')
github_my_btn = gr.Button(value="Add Github to Scratch MyData",
visible=allow_upload_to_my_data, elem_id='small_btn')
- sources_row3 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list).style(
- equal_height=False)
- with sources_row3:
+ sources_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list,
+ equal_height=False)
+ with sources_row:
with gr.Column(scale=1):
file_source = gr.File(interactive=False,
label="Download File w/Sources [click get sources to make file]")
with gr.Column(scale=2):
- pass
- sources_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list).style(
- equal_height=False)
- with sources_row:
- sources_text = gr.HTML(label='Sources Added', interactive=False)
+ sources_text = gr.HTML(label='Sources Added', interactive=False)
+
+ with gr.TabItem("Chat History"):
+ with gr.Row():
+ if 'mbart-' in kwargs['model_lower']:
+ src_lang = gr.Dropdown(list(languages_covered().keys()),
+ value=kwargs['src_lang'],
+ label="Input Language")
+ tgt_lang = gr.Dropdown(list(languages_covered().keys()),
+ value=kwargs['tgt_lang'],
+ label="Output Language")
+ radio_chats = gr.Radio(value=None, label="Saved Chats", visible=True, interactive=True,
+ type='value')
+ with gr.Row():
+ clear_chat_btn = gr.Button(value="Clear Chat", visible=True, size='sm')
+ export_chats_btn = gr.Button(value="Export Chats to Download", size='sm')
+ remove_chat_btn = gr.Button(value="Remove Selected Chat", visible=True, size='sm')
+ add_to_chats_btn = gr.Button("Import Chats from Upload", size='sm')
+ with gr.Row():
+ chats_file = gr.File(interactive=False, label="Download Exported Chats")
+ chatsup_output = gr.File(label="Upload Chat File(s)",
+ file_types=['.json'],
+ file_count='multiple',
+ elem_id="warning", elem_classes="feedback")
with gr.TabItem("Expert"):
with gr.Row():
@@ -425,22 +454,25 @@ body.dark{#warning {background-color: #555555};}
value=kwargs['stream_output'])
prompt_type = gr.Dropdown(prompt_types_strings,
value=kwargs['prompt_type'], label="Prompt Type",
- visible=not is_public)
+ visible=not kwargs['model_lock'],
+ interactive=not is_public,
+ )
prompt_type2 = gr.Dropdown(prompt_types_strings,
value=kwargs['prompt_type'], label="Prompt Type Model 2",
- visible=not is_public and False)
+ visible=False and not kwargs['model_lock'],
+ interactive=not is_public)
do_sample = gr.Checkbox(label="Sample",
info="Enable sampler, required for use of temperature, top_p, top_k",
value=kwargs['do_sample'])
- temperature = gr.Slider(minimum=0.01, maximum=3,
+ temperature = gr.Slider(minimum=0.01, maximum=2,
value=kwargs['temperature'],
label="Temperature",
info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)")
- top_p = gr.Slider(minimum=0, maximum=1,
+ top_p = gr.Slider(minimum=1e-3, maximum=1.0 - 1e-3,
value=kwargs['top_p'], label="Top p",
info="Cumulative probability of tokens to sample from")
top_k = gr.Slider(
- minimum=0, maximum=100, step=1,
+ minimum=1, maximum=100, step=1,
value=kwargs['top_k'], label="Top k",
info='Num. tokens to sample from'
)
@@ -452,18 +484,9 @@ body.dark{#warning {background-color: #555555};}
num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1,
value=min(max_beams, kwargs['num_beams']), label="Beams",
info="Number of searches for optimal overall probability. "
- "Uses more GPU memory/compute")
- # FIXME: 2048 should be tokenizer.model_max_length, but may not even have model yet
- if kwargs['max_new_tokens']:
- max_max_new_tokens = kwargs['max_new_tokens']
- elif memory_restriction_level == 1:
- max_max_new_tokens = 768
- elif memory_restriction_level == 2:
- max_max_new_tokens = 512
- elif memory_restriction_level >= 3:
- max_max_new_tokens = 256
- else:
- max_max_new_tokens = 2048
+ "Uses more GPU memory/compute",
+ interactive=False)
+ max_max_new_tokens = get_max_max_new_tokens(model_state0, **kwargs)
max_new_tokens = gr.Slider(
minimum=1, maximum=max_max_new_tokens, step=1,
value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length",
@@ -472,13 +495,21 @@ body.dark{#warning {background-color: #555555};}
minimum=0, maximum=max_max_new_tokens, step=1,
value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length",
)
+ max_new_tokens2 = gr.Slider(
+ minimum=1, maximum=max_max_new_tokens, step=1,
+ value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length 2",
+ visible=False and not kwargs['model_lock'],
+ )
+ min_new_tokens2 = gr.Slider(
+ minimum=0, maximum=max_max_new_tokens, step=1,
+ value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length 2",
+ visible=False and not kwargs['model_lock'],
+ )
early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search",
value=kwargs['early_stopping'])
- max_max_time = 60 * 5 if not is_public else 60 * 2
- if is_hf:
- max_max_time = min(max_max_time, 60 * 1)
- max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1,
- value=min(max_max_time, kwargs['max_time']), label="Max. time",
+ max_time = gr.Slider(minimum=0, maximum=kwargs['max_max_time'], step=1,
+ value=min(kwargs['max_max_time'],
+ kwargs['max_time']), label="Max. time",
info="Max. time to search optimal output.")
repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0,
value=kwargs['repetition_penalty'],
@@ -486,90 +517,137 @@ body.dark{#warning {background-color: #555555};}
num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1,
value=kwargs['num_return_sequences'],
label="Number Returns", info="Must be <= num_beams",
- visible=not is_public)
+ interactive=not is_public)
iinput = gr.Textbox(lines=4, label="Input",
placeholder=kwargs['placeholder_input'],
- visible=not is_public)
+ interactive=not is_public)
context = gr.Textbox(lines=3, label="System Pre-Context",
info="Directly pre-appended without prompt processing",
- visible=not is_public)
+ interactive=not is_public)
chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'],
- visible=not is_public)
- count_chat_tokens_btn = gr.Button(value="Count Chat Tokens", visible=not is_public)
+ visible=not kwargs['model_lock'],
+ interactive=not is_public,
+ )
+ count_chat_tokens_btn = gr.Button(value="Count Chat Tokens",
+ visible=not is_public and not kwargs['model_lock'],
+ interactive=not is_public)
chat_token_count = gr.Textbox(label="Chat Token Count", value=None,
- visible=not is_public, interactive=False)
- top_k_docs = gr.Slider(minimum=0, maximum=20, step=1,
+ visible=not is_public and not kwargs['model_lock'],
+ interactive=False)
+ chunk = gr.components.Checkbox(value=kwargs['chunk'],
+ label="Whether to chunk documents",
+ info="For LangChain",
+ visible=kwargs['langchain_mode'] != 'Disabled',
+ interactive=not is_public)
+ min_top_k_docs, max_top_k_docs, label_top_k_docs = get_minmax_top_k_docs(is_public)
+ top_k_docs = gr.Slider(minimum=min_top_k_docs, maximum=max_top_k_docs, step=1,
value=kwargs['top_k_docs'],
- label="Number of document chunks",
+ label=label_top_k_docs,
info="For LangChain",
- visible=not is_public)
+ visible=kwargs['langchain_mode'] != 'Disabled',
+ interactive=not is_public)
+ chunk_size = gr.Number(value=kwargs['chunk_size'],
+ label="Chunk size for document chunking",
+ info="For LangChain (ignored if chunk=False)",
+ minimum=128,
+ maximum=2048,
+ visible=kwargs['langchain_mode'] != 'Disabled',
+ interactive=not is_public,
+ precision=0)
with gr.TabItem("Models"):
+ model_lock_msg = gr.Textbox(lines=1, label="Model Lock Notice",
+ placeholder="Started in model_lock mode, no model changes allowed.",
+ visible=bool(kwargs['model_lock']), interactive=False)
load_msg = "Load-Unload Model/LORA [unload works if did not use --base_model]" if not is_public \
else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO"
load_msg2 = "Load-Unload Model/LORA 2 [unload works if did not use --base_model]" if not is_public \
else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2"
+ variant_load_msg = 'primary' if not is_public else 'secondary'
compare_checkbox = gr.components.Checkbox(label="Compare Mode",
- value=False, visible=not is_public)
+ value=kwargs['model_lock'],
+ visible=not is_public and not kwargs['model_lock'])
with gr.Row():
n_gpus_list = [str(x) for x in list(range(-1, n_gpus))]
with gr.Column():
with gr.Row():
- with gr.Column(scale=50):
+ with gr.Column(scale=20, visible=not kwargs['model_lock']):
model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model",
value=kwargs['base_model'])
lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA",
value=kwargs['lora_weights'], visible=kwargs['show_lora'])
- with gr.Column(scale=1):
- load_model_button = gr.Button(load_msg).style(full_width=False, size='sm')
+ server_choice = gr.Dropdown(server_options_state.value[0], label="Choose Server",
+ value=kwargs['inference_server'], visible=not is_public)
+ with gr.Column(scale=1, visible=not kwargs['model_lock']):
+ load_model_button = gr.Button(load_msg, variant=variant_load_msg, scale=0,
+ size='sm', interactive=not is_public)
model_load8bit_checkbox = gr.components.Checkbox(
label="Load 8-bit [requires support]",
- value=kwargs['load_8bit'])
+ value=kwargs['load_8bit'], interactive=not is_public)
model_infer_devices_checkbox = gr.components.Checkbox(
label="Choose Devices [If not Checked, use all GPUs]",
- value=kwargs['infer_devices'])
+ value=kwargs['infer_devices'], interactive=not is_public)
model_gpu = gr.Dropdown(n_gpus_list,
label="GPU ID [-1 = all GPUs, if Choose is enabled]",
- value=kwargs['gpu_id'])
+ value=kwargs['gpu_id'], interactive=not is_public)
model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'],
interactive=False)
lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'],
visible=kwargs['show_lora'], interactive=False)
+ server_used = gr.Textbox(label="Current Server",
+ value=kwargs['inference_server'],
+ visible=bool(kwargs['inference_server']) and not is_public,
+ interactive=False)
+ prompt_dict = gr.Textbox(label="Prompt (or Custom)",
+ value=pprint.pformat(kwargs['prompt_dict'], indent=4),
+ interactive=not is_public, lines=4)
col_model2 = gr.Column(visible=False)
with col_model2:
with gr.Row():
- with gr.Column(scale=50):
+ with gr.Column(scale=20, visible=not kwargs['model_lock']):
model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2",
value=no_model_str)
lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2",
value=no_lora_str,
visible=kwargs['show_lora'])
- with gr.Column(scale=1):
- load_model_button2 = gr.Button(load_msg2).style(full_width=False, size='sm')
+ server_choice2 = gr.Dropdown(server_options_state.value[0], label="Choose Server 2",
+ value=no_server_str,
+ visible=not is_public)
+ with gr.Column(scale=1, visible=not kwargs['model_lock']):
+ load_model_button2 = gr.Button(load_msg2, variant=variant_load_msg, scale=0,
+ size='sm', interactive=not is_public)
model_load8bit_checkbox2 = gr.components.Checkbox(
label="Load 8-bit 2 [requires support]",
- value=kwargs['load_8bit'])
+ value=kwargs['load_8bit'], interactive=not is_public)
model_infer_devices_checkbox2 = gr.components.Checkbox(
label="Choose Devices 2 [If not Checked, use all GPUs]",
value=kwargs[
- 'infer_devices'])
+ 'infer_devices'], interactive=not is_public)
model_gpu2 = gr.Dropdown(n_gpus_list,
label="GPU ID 2 [-1 = all GPUs, if choose is enabled]",
- value=kwargs['gpu_id'])
+ value=kwargs['gpu_id'], interactive=not is_public)
# no model/lora loaded ever in model2 by default
- model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str)
+ model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str,
+ interactive=False)
lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str,
- visible=kwargs['show_lora'])
- with gr.Row():
+ visible=kwargs['show_lora'], interactive=False)
+ server_used2 = gr.Textbox(label="Current Server 2", value=no_server_str,
+ interactive=False,
+ visible=not is_public)
+ prompt_dict2 = gr.Textbox(label="Prompt (or Custom) 2",
+ value=pprint.pformat(kwargs['prompt_dict'], indent=4),
+ interactive=not is_public, lines=4)
+ with gr.Row(visible=not kwargs['model_lock']):
with gr.Column(scale=50):
- new_model = gr.Textbox(label="New Model HF name/path")
- with gr.Row():
- add_model_button = gr.Button("Add new model name").style(full_width=False, size='sm')
+ new_model = gr.Textbox(label="New Model name/path", interactive=not is_public)
with gr.Column(scale=50):
- new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora'])
+ new_lora = gr.Textbox(label="New LORA name/path", visible=kwargs['show_lora'],
+ interactive=not is_public)
+ with gr.Column(scale=50):
+ new_server = gr.Textbox(label="New Server url:port", interactive=not is_public)
with gr.Row():
- add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora']).style(
- full_width=False, size='sm')
+ add_model_lora_server_button = gr.Button("Add new Model, Lora, Server url:port", scale=0,
+ size='sm', interactive=not is_public)
with gr.TabItem("System"):
admin_row = gr.Row()
with admin_row:
@@ -580,8 +658,17 @@ body.dark{#warning {background-color: #555555};}
with gr.Column():
with gr.Row():
system_btn = gr.Button(value='Get System Info')
- system_text = gr.Textbox(label='System Info', interactive=False).style(
- show_copy_button=True)
+ system_text = gr.Textbox(label='System Info', interactive=False, show_copy_button=True)
+ with gr.Row():
+ system_input = gr.Textbox(label='System Info Dict Password', interactive=True,
+ visible=not is_public)
+ system_btn2 = gr.Button(value='Get System Info Dict', visible=not is_public)
+ system_text2 = gr.Textbox(label='System Info Dict', interactive=False,
+ visible=not is_public, show_copy_button=True)
+ with gr.Row():
+ system_btn3 = gr.Button(value='Get Hash', visible=not is_public)
+ system_text3 = gr.Textbox(label='Hash', interactive=False,
+ visible=not is_public, show_copy_button=True)
with gr.Row():
zip_btn = gr.Button("Zip")
@@ -601,6 +688,11 @@ body.dark{#warning {background-color: #555555};}
description += """
'):
- prompt = prompt[:-4]
- prompt = prompt.replace('
', chat_sep)
- if not prompt.endswith(chat_sep):
- prompt += chat_sep
- # most recent first, add older if can
- # only include desired chat history
- if len(prompt + context1) > max_prompt_length:
- break
- context1 = prompt + context1
+ return history_list[0]
- _, pre_response, terminate_response, chat_sep = generate_prompt({}, prompt_type1, chat1,
- reduced=True)
- if context1 and not context1.endswith(chat_sep):
- context1 += chat_sep # ensure if terminates abruptly, then human continues on next line
- return context1
+ def get_model_max_length(model_state1):
+ if model_state1 and not isinstance(model_state1["tokenizer"], str):
+ tokenizer = model_state1["tokenizer"]
+ elif model_state0 and not isinstance(model_state0["tokenizer"], str):
+ tokenizer = model_state0["tokenizer"]
+ else:
+ tokenizer = None
+ if tokenizer is not None:
+ return tokenizer.model_max_length
+ else:
+ return 2000
- def bot(*args, retry=False):
+ def prep_bot(*args, retry=False):
"""
- bot that consumes history for user input
- instruction (from input_list) itself is not consumed by bot
+
:param args:
:param retry:
- :return:
+ :return: last element is True if should run bot, False if should just yield history
"""
# don't deepcopy, can contain model itself
args_list = list(args).copy()
model_state1 = args_list[-3]
my_db_state1 = args_list[-2]
history = args_list[-1]
+ langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')]
- if model_state1[0] is None or model_state1[0] == no_model_str:
- history = []
- yield history, ''
- return
+ if model_state1['model'] is None or model_state1['model'] == no_model_str:
+ return history, None, None, None
args_list = args_list[:-3] # only keep rest needed for evaluate()
- langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')]
- if retry and history:
- history.pop()
- if not args_list[eval_func_param_names.index('do_sample')]:
- # if was not sampling, no point in retry unless change to sample
- args_list[eval_func_param_names.index('do_sample')] = True
if not history:
print("No history", flush=True)
history = []
- yield history, ''
- return
+ return history, None, None, None
instruction1 = history[-1][0]
- if not instruction1:
- # reject empty query, can sometimes go nuts
- history = []
- yield history, ''
- return
- prompt_type1 = args_list[eval_func_param_names.index('prompt_type')]
+ if retry and history:
+ # if retry, pop history and move onto bot stuff
+ instruction1 = history[-1][0]
+ history[-1][1] = None
+ elif not instruction1:
+ # if not retrying, then reject empty query
+ return history, None, None, None
+ elif len(history) > 0 and history[-1][1] not in [None, '']:
+ # reject submit button if already filled and not retrying
+ # None when not filling with '' to keep client happy
+ return history, None, None, None
+
+ # shouldn't have to specify in API prompt_type if CLI launched model, so prefer global CLI one if have it
+ prompt_type1 = kwargs.get('prompt_type', args_list[eval_func_param_names.index('prompt_type')])
+ # prefer model specific prompt type instead of global one, and apply back to args_list for evaluate()
+ args_list[eval_func_param_names.index('prompt_type')] = prompt_type1 = \
+ model_state1.get('prompt_type', prompt_type1)
+
+ prompt_dict1 = kwargs.get('prompt_dict', args_list[eval_func_param_names.index('prompt_dict')])
+ args_list[eval_func_param_names.index('prompt_dict')] = prompt_dict1 = \
+ model_state1.get('prompt_dict', prompt_dict1)
+
chat1 = args_list[eval_func_param_names.index('chat')]
- context1 = history_to_context(history, langchain_mode1, prompt_type1, chat1)
+ model_max_length1 = get_model_max_length(model_state1)
+ context1 = history_to_context(history, langchain_mode1, prompt_type1, prompt_dict1, chat1,
+ model_max_length1, memory_restriction_level,
+ kwargs['keep_sources_in_context'])
args_list[0] = instruction1 # override original instruction with history from user
args_list[2] = context1
+
fun1 = partial(evaluate,
model_state1,
my_db_state1,
+ *tuple(args_list),
**kwargs_evaluate)
+
+ return history, fun1, langchain_mode1, my_db_state1
+
+ def get_response(fun1, history):
+ """
+ bot that consumes history for user input
+ instruction (from input_list) itself is not consumed by bot
+ :return:
+ """
+ if not fun1:
+ yield history, ''
+ return
try:
- for output_fun in fun1(*tuple(args_list)):
+ for output_fun in fun1():
output = output_fun['response']
extra = output_fun['sources'] # FIXME: can show sources in separate text box etc.
# ensure good visually, else markdown ignores multiple \n
- bot_message = output.replace('\n', '
')
+ bot_message = fix_text_for_gradio(output)
history[-1][1] = bot_message
yield history, ''
except StopIteration:
@@ -1010,8 +1244,98 @@ body.dark{#warning {background-color: #555555};}
history[-1][1] = ''
yield history, ex
raise
+ finally:
+ clear_torch_cache()
return
+ def clear_embeddings(langchain_mode1, my_db):
+ # clear any use of embedding that sits on GPU, else keeps accumulating GPU usage even if clear torch cache
+ if db_type == 'chroma' and langchain_mode1 not in ['ChatLLM', 'LLM', 'Disabled', None, '']:
+ from gpt_langchain import clear_embedding
+ db = dbs.get('langchain_mode1')
+ if db is not None and not isinstance(db, str):
+ clear_embedding(db)
+ if langchain_mode1 == LangChainMode.MY_DATA.value and my_db is not None:
+ clear_embedding(my_db[0])
+
+ def bot(*args, retry=False):
+ history, fun1, langchain_mode1, my_db_state1 = prep_bot(*args, retry=retry)
+ try:
+ for res in get_response(fun1, history):
+ yield res
+ finally:
+ clear_embeddings(langchain_mode1, my_db_state1)
+
+ def all_bot(*args, retry=False, model_states1=None):
+ args_list = list(args).copy()
+ chatbots = args_list[-len(model_states1):]
+ args_list0 = args_list[:-len(model_states1)] # same for all models
+ exceptions = []
+ stream_output1 = args_list[eval_func_param_names.index('stream_output')]
+ max_time1 = args_list[eval_func_param_names.index('max_time')]
+ langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')]
+ my_db_state1 = None # will be filled below by some bot
+ try:
+ gen_list = []
+ for chatbot1, model_state1 in zip(chatbots, model_states1):
+ args_list1 = args_list0.copy()
+ args_list1.insert(-1, model_state1) # insert at -1 so is at -2
+ # if at start, have None in response still, replace with '' so client etc. acts like normal
+ # assumes other parts of code treat '' and None as if no response yet from bot
+ # can't do this later in bot code as racy with threaded generators
+ if len(chatbot1) > 0 and len(chatbot1[-1]) == 2 and chatbot1[-1][1] is None:
+ chatbot1[-1][1] = ''
+ args_list1.append(chatbot1)
+ # so consistent with prep_bot()
+ # with model_state1 at -3, my_db_state1 at -2, and history(chatbot) at -1
+ # langchain_mode1 and my_db_state1 should be same for every bot
+ history, fun1, langchain_mode1, my_db_state1 = prep_bot(*tuple(args_list1), retry=retry)
+ gen1 = get_response(fun1, history)
+ if stream_output1:
+ gen1 = TimeoutIterator(gen1, timeout=0.01, sentinel=None, raise_on_exception=False)
+ # else timeout will truncate output for non-streaming case
+ gen_list.append(gen1)
+
+ bots_old = chatbots.copy()
+ exceptions_old = [''] * len(bots_old)
+ tgen0 = time.time()
+ for res1 in itertools.zip_longest(*gen_list):
+ if time.time() - tgen0 > max_time1:
+ break
+
+ bots = [x[0] if x is not None and not isinstance(x, BaseException) else y for x, y in
+ zip(res1, bots_old)]
+ bots_old = bots.copy()
+
+ def larger_str(x, y):
+ return x if len(x) > len(y) else y
+
+ exceptions = [x[1] if x is not None and not isinstance(x, BaseException) else larger_str(str(x), y)
+ for x, y in zip(res1, exceptions_old)]
+ exceptions_old = exceptions.copy()
+
+ def choose_exc(x):
+ # don't expose ports etc. to exceptions window
+ if is_public:
+ return "Endpoint unavailable or failed"
+ else:
+ return x
+
+ exceptions_str = '\n'.join(
+ ['Model %s: %s' % (iix, choose_exc(x)) for iix, x in enumerate(exceptions) if
+ x not in [None, '', 'None']])
+ if len(bots) > 1:
+ yield tuple(bots + [exceptions_str])
+ else:
+ yield bots[0], exceptions_str
+ if exceptions:
+ exceptions = [x for x in exceptions if x not in ['', None, 'None']]
+ if exceptions:
+ print("Generate exceptions: %s" % exceptions, flush=True)
+ finally:
+ clear_torch_cache()
+ clear_embeddings(langchain_mode1, my_db_state1)
+
# NORMAL MODEL
user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']),
inputs=inputs_list + [text_output],
@@ -1025,89 +1349,196 @@ body.dark{#warning {background-color: #555555};}
inputs=inputs_list + [model_state, my_db_state] + [text_output],
outputs=[text_output, exception_text],
)
+ retry_user_args = dict(fn=functools.partial(user, retry=True),
+ inputs=inputs_list + [text_output],
+ outputs=text_output,
+ )
undo_user_args = dict(fn=functools.partial(user, undo=True),
inputs=inputs_list + [text_output],
outputs=text_output,
)
# MODEL2
- user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], model2=True),
- inputs=inputs_list + [text_output2],
+ user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']),
+ inputs=inputs_list2 + [text_output2],
outputs=text_output2,
)
bot_args2 = dict(fn=bot,
- inputs=inputs_list + [model_state2, my_db_state] + [text_output2],
+ inputs=inputs_list2 + [model_state2, my_db_state] + [text_output2],
outputs=[text_output2, exception_text],
)
retry_bot_args2 = dict(fn=functools.partial(bot, retry=True),
- inputs=inputs_list + [model_state2, my_db_state] + [text_output2],
+ inputs=inputs_list2 + [model_state2, my_db_state] + [text_output2],
outputs=[text_output2, exception_text],
)
+ retry_user_args2 = dict(fn=functools.partial(user, retry=True),
+ inputs=inputs_list2 + [text_output2],
+ outputs=text_output2,
+ )
undo_user_args2 = dict(fn=functools.partial(user, undo=True),
- inputs=inputs_list + [text_output2],
+ inputs=inputs_list2 + [text_output2],
outputs=text_output2,
)
+ # MODEL N
+ all_user_args = dict(fn=functools.partial(all_user,
+ sanitize_user_prompt=kwargs['sanitize_user_prompt'],
+ num_model_lock=len(text_outputs),
+ ),
+ inputs=inputs_list + text_outputs,
+ outputs=text_outputs,
+ )
+ all_bot_args = dict(fn=functools.partial(all_bot, model_states1=model_states),
+ inputs=inputs_list + [my_db_state] + text_outputs,
+ outputs=text_outputs + [exception_text],
+ )
+ all_retry_bot_args = dict(fn=functools.partial(all_bot, model_states1=model_states, retry=True),
+ inputs=inputs_list + [my_db_state] + text_outputs,
+ outputs=text_outputs + [exception_text],
+ )
+ all_retry_user_args = dict(fn=functools.partial(all_user, retry=True,
+ sanitize_user_prompt=kwargs['sanitize_user_prompt'],
+ num_model_lock=len(text_outputs),
+ ),
+ inputs=inputs_list + text_outputs,
+ outputs=text_outputs,
+ )
+ all_undo_user_args = dict(fn=functools.partial(all_user, undo=True,
+ sanitize_user_prompt=kwargs['sanitize_user_prompt'],
+ num_model_lock=len(text_outputs),
+ ),
+ inputs=inputs_list + text_outputs,
+ outputs=text_outputs,
+ )
+
def clear_instruct():
return gr.Textbox.update(value='')
- if kwargs['auto_score']:
- score_args_submit = score_args
- score_args2_submit = score_args2
+ def deselect_radio_chats():
+ return gr.update(value=None)
+
+ def clear_all():
+ return gr.Textbox.update(value=''), gr.Textbox.update(value=''), gr.update(value=None), \
+ gr.Textbox.update(value=''), gr.Textbox.update(value='')
+
+ if kwargs['model_states']:
+ submits1 = submits2 = submits3 = []
+ submits4 = []
+
+ fun_source = [instruction.submit, submit.click, retry_btn.click]
+ fun_name = ['instruction', 'submit', 'retry']
+ user_args = [all_user_args, all_user_args, all_retry_user_args]
+ bot_args = [all_bot_args, all_bot_args, all_retry_bot_args]
+ for userargs1, botarg1, funn1, funs1 in zip(user_args, bot_args, fun_name, fun_source):
+ submit_event11 = funs1(fn=dummy_fun,
+ inputs=instruction, outputs=instruction, queue=queue)
+ submit_event1a = submit_event11.then(**userargs1, queue=queue,
+ api_name='%s' % funn1 if allow_api else None)
+ # if hit enter on new instruction for submitting new query, no longer the saved chat
+ submit_event1b = submit_event1a.then(clear_all, inputs=None,
+ outputs=[instruction, iinput, radio_chats, score_text,
+ score_text2],
+ queue=queue)
+ submit_event1c = submit_event1b.then(**botarg1,
+ api_name='%s_bot' % funn1 if allow_api else None,
+ queue=queue)
+ submit_event1d = submit_event1c.then(**all_score_args,
+ api_name='%s_bot_score' % funn1 if allow_api else None,
+ queue=queue)
+
+ submits1.extend([submit_event1a, submit_event1b, submit_event1c, submit_event1d])
+
+ # if undo, no longer the saved chat
+ submit_event4 = undo.click(fn=dummy_fun,
+ inputs=instruction, outputs=instruction, queue=queue) \
+ .then(**all_undo_user_args, api_name='undo' if allow_api else None) \
+ .then(clear_all, inputs=None, outputs=[instruction, iinput, radio_chats, score_text,
+ score_text2], queue=queue) \
+ .then(**all_score_args, api_name='undo_score' if allow_api else None)
+ submits4 = [submit_event4]
+
else:
- score_args_submit = dict(fn=lambda: None, inputs=None, outputs=None)
- score_args2_submit = dict(fn=lambda: None, inputs=None, outputs=None)
-
- # in case 2nd model, consume instruction first, so can clear quickly
- # bot doesn't consume instruction itself, just history from user, so why works
- submit_event1a = instruction.submit(**user_args, queue=queue,
- api_name='instruction' if allow_api else None)
- submit_event1b = submit_event1a.then(**user_args2, api_name='instruction2' if allow_api else None)
- submit_event1c = submit_event1b.then(clear_instruct, None, instruction) \
- .then(clear_instruct, None, iinput)
- submit_event1d = submit_event1c.then(**bot_args, api_name='instruction_bot' if allow_api else None,
- queue=queue)
- submit_event1e = submit_event1d.then(**score_args_submit,
- api_name='instruction_bot_score' if allow_api else None,
- queue=queue)
- submit_event1f = submit_event1e.then(**bot_args2, api_name='instruction_bot2' if allow_api else None,
- queue=queue)
- submit_event1g = submit_event1f.then(**score_args2_submit,
- api_name='instruction_bot_score2' if allow_api else None, queue=queue)
- submit_event1h = submit_event1g.then(clear_torch_cache)
-
- submit_event2a = submit.click(**user_args, api_name='submit' if allow_api else None)
- submit_event2b = submit_event2a.then(**user_args2, api_name='submit2' if allow_api else None)
- submit_event2c = submit_event2b.then(clear_instruct, None, instruction) \
- .then(clear_instruct, None, iinput)
- submit_event2d = submit_event2c.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue)
- submit_event2e = submit_event2d.then(**score_args_submit, api_name='submit_bot_score' if allow_api else None,
- queue=queue)
- submit_event2f = submit_event2e.then(**bot_args2, api_name='submit_bot2' if allow_api else None, queue=queue)
- submit_event2g = submit_event2f.then(**score_args2_submit, api_name='submit_bot_score2' if allow_api else None,
- queue=queue)
- submit_event2h = submit_event2g.then(clear_torch_cache)
-
- submit_event3a = retry.click(**user_args, api_name='retry' if allow_api else None)
- submit_event3b = submit_event3a.then(**user_args2, api_name='retry2' if allow_api else None)
- submit_event3c = submit_event3b.then(clear_instruct, None, instruction) \
- .then(clear_instruct, None, iinput)
- submit_event3d = submit_event3c.then(**retry_bot_args, api_name='retry_bot' if allow_api else None,
- queue=queue)
- submit_event3e = submit_event3d.then(**score_args_submit, api_name='retry_bot_score' if allow_api else None,
- queue=queue)
- submit_event3f = submit_event3e.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None,
- queue=queue)
- submit_event3g = submit_event3f.then(**score_args2_submit, api_name='retry_bot_score2' if allow_api else None,
- queue=queue)
- submit_event3h = submit_event3g.then(clear_torch_cache)
-
- submit_event4 = undo.click(**undo_user_args, api_name='undo' if allow_api else None) \
- .then(**undo_user_args2, api_name='undo2' if allow_api else None) \
- .then(clear_instruct, None, instruction) \
- .then(clear_instruct, None, iinput) \
- .then(**score_args_submit, api_name='undo_score' if allow_api else None) \
- .then(**score_args2_submit, api_name='undo_score2' if allow_api else None)
+ # in case 2nd model, consume instruction first, so can clear quickly
+ # bot doesn't consume instruction itself, just history from user, so why works
+ submit_event11 = instruction.submit(fn=dummy_fun,
+ inputs=instruction, outputs=instruction, queue=queue)
+ submit_event1a = submit_event11.then(**user_args, queue=queue,
+ api_name='instruction' if allow_api else None)
+ # if hit enter on new instruction for submitting new query, no longer the saved chat
+ submit_event1a2 = submit_event1a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue)
+ submit_event1b = submit_event1a2.then(**user_args2, api_name='instruction2' if allow_api else None)
+ submit_event1c = submit_event1b.then(clear_instruct, None, instruction) \
+ .then(clear_instruct, None, iinput)
+ submit_event1d = submit_event1c.then(**bot_args, api_name='instruction_bot' if allow_api else None,
+ queue=queue)
+ submit_event1e = submit_event1d.then(**score_args,
+ api_name='instruction_bot_score' if allow_api else None,
+ queue=queue)
+ submit_event1f = submit_event1e.then(**bot_args2, api_name='instruction_bot2' if allow_api else None,
+ queue=queue)
+ submit_event1g = submit_event1f.then(**score_args2,
+ api_name='instruction_bot_score2' if allow_api else None, queue=queue)
+
+ submits1 = [submit_event1a, submit_event1a2, submit_event1b, submit_event1c, submit_event1d,
+ submit_event1e,
+ submit_event1f, submit_event1g]
+
+ submit_event21 = submit.click(fn=dummy_fun,
+ inputs=instruction, outputs=instruction, queue=queue)
+ submit_event2a = submit_event21.then(**user_args, api_name='submit' if allow_api else None)
+ # if submit new query, no longer the saved chat
+ submit_event2a2 = submit_event2a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue)
+ submit_event2b = submit_event2a2.then(**user_args2, api_name='submit2' if allow_api else None)
+ submit_event2c = submit_event2b.then(clear_all, inputs=None,
+ outputs=[instruction, iinput, radio_chats, score_text, score_text2],
+ queue=queue)
+ submit_event2d = submit_event2c.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue)
+ submit_event2e = submit_event2d.then(**score_args,
+ api_name='submit_bot_score' if allow_api else None,
+ queue=queue)
+ submit_event2f = submit_event2e.then(**bot_args2, api_name='submit_bot2' if allow_api else None,
+ queue=queue)
+ submit_event2g = submit_event2f.then(**score_args2,
+ api_name='submit_bot_score2' if allow_api else None,
+ queue=queue)
+
+ submits2 = [submit_event2a, submit_event2a2, submit_event2b, submit_event2c, submit_event2d,
+ submit_event2e,
+ submit_event2f, submit_event2g]
+
+ submit_event31 = retry_btn.click(fn=dummy_fun,
+ inputs=instruction, outputs=instruction, queue=queue)
+ submit_event3a = submit_event31.then(**user_args, api_name='retry' if allow_api else None)
+ # if retry, no longer the saved chat
+ submit_event3a2 = submit_event3a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue)
+ submit_event3b = submit_event3a2.then(**user_args2, api_name='retry2' if allow_api else None)
+ submit_event3c = submit_event3b.then(clear_instruct, None, instruction) \
+ .then(clear_instruct, None, iinput)
+ submit_event3d = submit_event3c.then(**retry_bot_args, api_name='retry_bot' if allow_api else None,
+ queue=queue)
+ submit_event3e = submit_event3d.then(**score_args,
+ api_name='retry_bot_score' if allow_api else None,
+ queue=queue)
+ submit_event3f = submit_event3e.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None,
+ queue=queue)
+ submit_event3g = submit_event3f.then(**score_args2,
+ api_name='retry_bot_score2' if allow_api else None,
+ queue=queue)
+
+ submits3 = [submit_event3a, submit_event3a2, submit_event3b, submit_event3c, submit_event3d,
+ submit_event3e,
+ submit_event3f, submit_event3g]
+
+ # if undo, no longer the saved chat
+ submit_event4 = undo.click(fn=dummy_fun,
+ inputs=instruction, outputs=instruction, queue=queue) \
+ .then(**undo_user_args, api_name='undo' if allow_api else None) \
+ .then(**undo_user_args2, api_name='undo2' if allow_api else None) \
+ .then(clear_all, inputs=None, outputs=[instruction, iinput, radio_chats, score_text,
+ score_text2], queue=queue) \
+ .then(**score_args, api_name='undo_score' if allow_api else None) \
+ .then(**score_args2, api_name='undo_score2' if allow_api else None)
+ submits4 = [submit_event4]
# MANAGE CHATS
def dedup(short_chat, short_chats):
@@ -1133,50 +1564,80 @@ body.dark{#warning {background-color: #555555};}
#
etc. added in chat, try to remove some of that to help avoid dup entries when hit new conversation is_same = True # length of conversation has to be same + if len(x) != len(y): + return False if len(x) != len(y): return False for stepx, stepy in zip(x, y): if len(stepx) != len(stepy): # something off with a conversation return False - if len(stepx) != 2: - # something off - return False - if len(stepy) != 2: - # something off - return False - questionx = stepx[0].replace('
', '').replace('
', '') if stepx[0] is not None else None - answerx = stepx[1].replace('', '').replace('
', '') if stepx[1] is not None else None - - questiony = stepy[0].replace('', '').replace('
', '') if stepy[0] is not None else None - answery = stepy[1].replace('', '').replace('
', '') if stepy[1] is not None else None - - if questionx != questiony or answerx != answery: - return False + for stepxx, stepyy in zip(stepx, stepy): + if len(stepxx) != len(stepyy): + # something off with a conversation + return False + if len(stepxx) != 2: + # something off + return False + if len(stepyy) != 2: + # something off + return False + questionx = stepxx[0].replace('', '').replace('
', '') if stepxx[0] is not None else None + answerx = stepxx[1].replace('', '').replace('
', '') if stepxx[1] is not None else None + + questiony = stepyy[0].replace('', '').replace('
', '') if stepyy[0] is not None else None + answery = stepyy[1].replace('', '').replace('
', '') if stepyy[1] is not None else None + + if questionx != questiony or answerx != answery: + return False return is_same - def save_chat(chat1, chat2, chat_state1): + def save_chat(*args): + args_list = list(args) + chat_list = args_list[:-1] # list of chatbot histories + # remove None histories + chat_list_not_none = [x for x in chat_list if x and len(x) > 0 and len(x[0]) == 2 and x[0][1] is not None] + chat_state1 = args_list[ + -1] # dict with keys of short chat names, values of list of list of chatbot histories short_chats = list(chat_state1.keys()) - for chati in [chat1, chat2]: - if chati and len(chati) > 0 and len(chati[0]) == 2 and chati[0][1] is not None: - short_chat = get_short_chat(chati, short_chats) - if short_chat: - already_exists = any([is_chat_same(chati, x) for x in chat_state1.values()]) - if not already_exists: - chat_state1[short_chat] = chati - return chat_state1 + if len(chat_list_not_none) > 0: + # make short_chat key from only first history, based upon question that is same anyways + chat_first = chat_list_not_none[0] + short_chat = get_short_chat(chat_first, short_chats) + if short_chat: + old_chat_lists = list(chat_state1.values()) + already_exists = any([is_chat_same(chat_list, x) for x in old_chat_lists]) + if not already_exists: + chat_state1[short_chat] = chat_list.copy() + # clear chat_list so saved and then new conversation starts + chat_list = [[]] * len(chat_list) + ret_list = chat_list + [chat_state1] + return tuple(ret_list) def update_radio_chats(chat_state1): return gr.update(choices=list(chat_state1.keys()), value=None) - def deselect_radio_chats(): - return gr.update(value=None) - - def switch_chat(chat_key, chat_state1): + def switch_chat(chat_key, chat_state1, num_model_lock=0): chosen_chat = chat_state1[chat_key] - return chosen_chat, chosen_chat - - radio_chats.input(switch_chat, inputs=[radio_chats, chat_state], outputs=[text_output, text_output2]) + # deal with possible different size of chat list vs. current list + ret_chat = [None] * (2 + num_model_lock) + for chati in range(0, 2 + num_model_lock): + ret_chat[chati % len(ret_chat)] = chosen_chat[chati % len(chosen_chat)] + return tuple(ret_chat) + + def clear_texts(*args): + return tuple([gr.Textbox.update(value='')] * len(args)) + + def clear_scores(): + return gr.Textbox.update(value=res_value), \ + gr.Textbox.update(value='Response Score: NA'), \ + gr.Textbox.update(value='Response Score: NA') + + switch_chat_fun = functools.partial(switch_chat, num_model_lock=len(text_outputs)) + radio_chats.input(switch_chat_fun, + inputs=[radio_chats, chat_state], + outputs=[text_output, text_output2] + text_outputs) \ + .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) def remove_chat(chat_key, chat_state1): chat_state1.pop(chat_key, None) @@ -1213,9 +1674,11 @@ body.dark{#warning {background-color: #555555};} new_chats = json.loads(f.read()) for chat1_k, chat1_v in new_chats.items(): # ignore chat1_k, regenerate and de-dup to avoid loss - chat_state1 = save_chat(chat1_v, None, chat_state1) + _, chat_state1 = save_chat(chat1_v, chat_state1) except BaseException as e: - print("Add chats exception: %s" % str(e), flush=True) + t, v, tb = sys.exc_info() + ex = ''.join(traceback.format_exception(t, v, tb)) + print("Add chats exception: %s" % str(ex), flush=True) return chat_state1, add_btn # note for update_user_db_func output is ignored for db @@ -1226,51 +1689,73 @@ body.dark{#warning {background-color: #555555};} .then(clear_file_list, outputs=chatsup_output, queue=False) \ .then(update_radio_chats, inputs=chat_state, outputs=radio_chats, queue=False) - clear_chat_btn.click(lambda: None, None, text_output, queue=False, api_name='clear' if allow_api else None) \ - .then(lambda: None, None, text_output2, queue=False, api_name='clear2' if allow_api else None) \ - .then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False) + clear_chat_btn.click(fn=clear_texts, + inputs=[text_output, text_output2] + text_outputs, + outputs=[text_output, text_output2] + text_outputs, + queue=False, api_name='clear' if allow_api else None) \ + .then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False) \ + .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) # does both models - clear.click(save_chat, inputs=[text_output, text_output2, chat_state], outputs=chat_state, + clear.click(save_chat, + inputs=[text_output, text_output2] + text_outputs + [chat_state], + outputs=[text_output, text_output2] + text_outputs + [chat_state], api_name='save_chat' if allow_api else None) \ .then(update_radio_chats, inputs=chat_state, outputs=radio_chats, api_name='update_chats' if allow_api else None) \ - .then(lambda: None, None, text_output, queue=False, api_name='clearB' if allow_api else None) \ - .then(lambda: None, None, text_output2, queue=False, api_name='clearB2' if allow_api else None) + .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) + # NOTE: clear of instruction/iinput for nochat has to come after score, # because score for nochat consumes actual textbox, while chat consumes chat history filled by user() - submit_event_nochat = submit_nochat.click(fun, - inputs=[model_state, my_db_state] + inputs_list, - outputs=text_output_nochat, - queue=queue, - api_name='submit_nochat' if allow_api else None) \ + no_chat_args = dict(fn=fun, + inputs=[model_state, my_db_state] + inputs_list, + outputs=text_output_nochat, + queue=queue, + ) + submit_event_nochat = submit_nochat.click(**no_chat_args, api_name='submit_nochat' if allow_api else None) \ + .then(clear_torch_cache) \ .then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None, queue=queue) \ .then(clear_instruct, None, instruction_nochat) \ .then(clear_instruct, None, iinput_nochat) \ .then(clear_torch_cache) + # copy of above with text box submission + submit_event_nochat2 = instruction_nochat.submit(**no_chat_args) \ + .then(clear_torch_cache) \ + .then(**score_args_nochat, queue=queue) \ + .then(clear_instruct, None, instruction_nochat) \ + .then(clear_instruct, None, iinput_nochat) \ + .then(clear_torch_cache) - def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id): + submit_event_nochat_api = submit_nochat_api.click(fun_with_dict_str, + inputs=[model_state, my_db_state, inputs_dict_str], + outputs=text_output_nochat_api, + queue=True, # required for generator + api_name='submit_nochat_api' if allow_api else None) \ + .then(clear_torch_cache) + + def load_model(model_name, lora_weights, server_name, model_state_old, prompt_type_old, load_8bit, + infer_devices, gpu_id): # ensure old model removed from GPU memory if kwargs['debug']: print("Pre-switch pre-del GPU memory: %s" % get_torch_allocated(), flush=True) - model0 = model_state0[0] - if isinstance(model_state_old[0], str) and model0 is not None: + model0 = model_state0['model'] + if isinstance(model_state_old['model'], str) and model0 is not None: # best can do, move model loaded at first to CPU model0.cpu() - if model_state_old[0] is not None and not isinstance(model_state_old[0], str): + if model_state_old['model'] is not None and not isinstance(model_state_old['model'], str): try: - model_state_old[0].cpu() + model_state_old['model'].cpu() except Exception as e: # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data! print("Unable to put model on CPU: %s" % str(e), flush=True) - del model_state_old[0] - model_state_old[0] = None + del model_state_old['model'] + model_state_old['model'] = None - if model_state_old[1] is not None and not isinstance(model_state_old[1], str): - del model_state_old[1] - model_state_old[1] = None + if model_state_old['tokenizer'] is not None and not isinstance(model_state_old['tokenizer'], str): + del model_state_old['tokenizer'] + model_state_old['tokenizer'] = None clear_torch_cache() if kwargs['debug']: @@ -1280,7 +1765,11 @@ body.dark{#warning {background-color: #555555};} # no-op if no model, just free memory # no detranscribe needed for model, never go into evaluate lora_weights = no_lora_str - return [None, None, None, model_name], model_name, lora_weights, prompt_type_old + server_name = no_server_str + return [None, None, None, model_name, server_name], \ + model_name, lora_weights, server_name, prompt_type_old, \ + gr.Slider.update(maximum=256), \ + gr.Slider.update(maximum=256) # don't deepcopy, can contain model itself all_kwargs1 = all_kwargs.copy() @@ -1297,16 +1786,50 @@ body.dark{#warning {background-color: #555555};} # detranscribe if lora_weights == no_lora_str: lora_weights = '' - all_kwargs1['lora_weights'] = lora_weights.strip() + if server_name == no_server_str: + server_name = '' + all_kwargs1['inference_server'] = server_name.strip() + model1, tokenizer1, device1 = get_model(reward_type=False, **get_kwargs(get_model, exclude_names=['reward_type'], **all_kwargs1)) clear_torch_cache() + tokenizer_base_model = model_name + prompt_dict1, error0 = get_prompt(prompt_type1, '', + chat=False, context='', reduced=False, making_context=False, + return_dict=True) + model_state_new = dict(model=model1, tokenizer=tokenizer1, device=device1, + base_model=model_name, tokenizer_base_model=tokenizer_base_model, + lora_weights=lora_weights, inference_server=server_name, + prompt_type=prompt_type1, prompt_dict=prompt_dict1, + ) + + max_max_new_tokens1 = get_max_max_new_tokens(model_state_new, **kwargs) + if kwargs['debug']: print("Post-switch GPU memory: %s" % get_torch_allocated(), flush=True) - return [model1, tokenizer1, device1, model_name], model_name, lora_weights, prompt_type1 + return model_state_new, model_name, lora_weights, server_name, prompt_type1, \ + gr.Slider.update(maximum=max_max_new_tokens1), \ + gr.Slider.update(maximum=max_max_new_tokens1) + + def get_prompt_str(prompt_type1, prompt_dict1, which=0): + if prompt_type1 in ['', None]: + print("Got prompt_type %s: %s" % (which, prompt_type1), flush=True) + return str({}) + prompt_dict1, prompt_dict_error = get_prompt(prompt_type1, prompt_dict1, chat=False, context='', + reduced=False, making_context=False, return_dict=True) + if prompt_dict_error: + return str(prompt_dict_error) + else: + # return so user can manipulate if want and use as custom + return str(prompt_dict1) + + get_prompt_str_func1 = functools.partial(get_prompt_str, which=1) + get_prompt_str_func2 = functools.partial(get_prompt_str, which=2) + prompt_type.change(fn=get_prompt_str_func1, inputs=[prompt_type, prompt_dict], outputs=prompt_dict) + prompt_type2.change(fn=get_prompt_str_func2, inputs=[prompt_type2, prompt_dict2], outputs=prompt_dict2) def dropdown_prompt_type_list(x): return gr.Dropdown.update(value=x) @@ -1315,9 +1838,12 @@ body.dark{#warning {background-color: #555555};} return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]') load_model_args = dict(fn=load_model, - inputs=[model_choice, lora_choice, model_state, prompt_type, + inputs=[model_choice, lora_choice, server_choice, model_state, prompt_type, model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu], - outputs=[model_state, model_used, lora_used, prompt_type]) + outputs=[model_state, model_used, lora_used, server_used, + # if prompt_type changes, prompt_dict will change via change rule + prompt_type, max_new_tokens, min_new_tokens, + ]) prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type) chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output) nochat_update_args = dict(fn=chatbot_list, inputs=[text_output_nochat, model_used], outputs=text_output_nochat) @@ -1329,9 +1855,12 @@ body.dark{#warning {background-color: #555555};} .then(clear_torch_cache) load_model_args2 = dict(fn=load_model, - inputs=[model_choice2, lora_choice2, model_state2, prompt_type2, + inputs=[model_choice2, lora_choice2, server_choice2, model_state2, prompt_type2, model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2], - outputs=[model_state2, model_used2, lora_used2, prompt_type2]) + outputs=[model_state2, model_used2, lora_used2, server_used2, + # if prompt_type2 changes, prompt_dict2 will change via change rule + prompt_type2, max_new_tokens2, min_new_tokens2 + ]) prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2) chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2) if not is_public: @@ -1341,32 +1870,51 @@ body.dark{#warning {background-color: #555555};} .then(**chatbot_update_args2) \ .then(clear_torch_cache) - def dropdown_model_list(list0, x): - new_state = [list0[0] + [x]] - new_options = [*new_state[0]] - return gr.Dropdown.update(value=x, choices=new_options), \ - gr.Dropdown.update(value=x, choices=new_options), \ - '', new_state - - add_model_event = add_model_button.click(fn=dropdown_model_list, - inputs=[model_options_state, new_model], - outputs=[model_choice, model_choice2, new_model, model_options_state], - queue=False) - - def dropdown_lora_list(list0, x, model_used1, lora_used1, model_used2, lora_used2): - new_state = [list0[0] + [x]] - new_options = [*new_state[0]] + def dropdown_model_lora_server_list(model_list0, model_x, + lora_list0, lora_x, + server_list0, server_x, + model_used1, lora_used1, server_used1, + model_used2, lora_used2, server_used2, + ): + model_new_state = [model_list0[0] + [model_x]] + model_new_options = [*model_new_state[0]] + x1 = model_x if model_used1 == no_model_str else model_used1 + x2 = model_x if model_used2 == no_model_str else model_used2 + ret1 = [gr.Dropdown.update(value=x1, choices=model_new_options), + gr.Dropdown.update(value=x2, choices=model_new_options), + '', model_new_state] + + lora_new_state = [lora_list0[0] + [lora_x]] + lora_new_options = [*lora_new_state[0]] # don't switch drop-down to added lora if already have model loaded - x1 = x if model_used1 == no_model_str else lora_used1 - x2 = x if model_used2 == no_model_str else lora_used2 - return gr.Dropdown.update(value=x1, choices=new_options), \ - gr.Dropdown.update(value=x2, choices=new_options), \ - '', new_state - - add_lora_event = add_lora_button.click(fn=dropdown_lora_list, - inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2, - lora_used2], - outputs=[lora_choice, lora_choice2, new_lora, lora_options_state], + x1 = lora_x if model_used1 == no_model_str else lora_used1 + x2 = lora_x if model_used2 == no_model_str else lora_used2 + ret2 = [gr.Dropdown.update(value=x1, choices=lora_new_options), + gr.Dropdown.update(value=x2, choices=lora_new_options), + '', lora_new_state] + + server_new_state = [server_list0[0] + [server_x]] + server_new_options = [*server_new_state[0]] + # don't switch drop-down to added server if already have model loaded + x1 = server_x if model_used1 == no_model_str else server_used1 + x2 = server_x if model_used2 == no_model_str else server_used2 + ret3 = [gr.Dropdown.update(value=x1, choices=server_new_options), + gr.Dropdown.update(value=x2, choices=server_new_options), + '', server_new_state] + + return tuple(ret1 + ret2 + ret3) + + add_model_lora_server_event = \ + add_model_lora_server_button.click(fn=dropdown_model_lora_server_list, + inputs=[model_options_state, new_model] + + [lora_options_state, new_lora] + + [server_options_state, new_server] + + [model_used, lora_used, server_used] + + [model_used2, lora_used2, server_used2], + outputs=[model_choice, model_choice2, new_model, model_options_state] + + [lora_choice, lora_choice2, new_lora, lora_options_state] + + [server_choice, server_choice2, new_server, + server_options_state], queue=False) go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None, queue=False) \ @@ -1382,16 +1930,22 @@ body.dark{#warning {background-color: #555555};} def compare_prompt_fun(x): return gr.Dropdown.update(visible=x) + def slider_fun(x): + return gr.Slider.update(visible=x) + compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, api_name="compare_checkbox" if allow_api else None) \ .then(compare_column_fun, compare_checkbox, col_model2) \ .then(compare_prompt_fun, compare_checkbox, prompt_type2) \ - .then(compare_textbox_fun, compare_checkbox, score_text2) + .then(compare_textbox_fun, compare_checkbox, score_text2) \ + .then(slider_fun, compare_checkbox, max_new_tokens2) \ + .then(slider_fun, compare_checkbox, min_new_tokens2) # FIXME: add score_res2 in condition, but do better # callback for logging flagged input/output - callback.setup(inputs_list + [text_output, text_output2], "flagged_data_points") - flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output, text_output2], None, + callback.setup(inputs_list + [text_output, text_output2] + text_outputs, "flagged_data_points") + flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output, text_output2] + text_outputs, + None, preprocess=False, api_name='flag' if allow_api else None, queue=False) flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output_nochat], None, @@ -1399,25 +1953,64 @@ body.dark{#warning {background-color: #555555};} api_name='flag_nochat' if allow_api else None, queue=False) def get_system_info(): + if is_public: + time.sleep(10) # delay to avoid spam since queue=False return gr.Textbox.update(value=system_info_print()) system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info' if allow_api else None, queue=False) + def get_system_info_dict(system_input1, **kwargs1): + if system_input1 != os.getenv("ADMIN_PASS", ""): + return json.dumps({}) + exclude_list = ['admin_pass', 'examples'] + sys_dict = {k: v for k, v in kwargs1.items() if + isinstance(v, (str, int, bool, float)) and k not in exclude_list} + try: + sys_dict.update(system_info()) + except Exception as e: + # protection + print("Exception: %s" % str(e), flush=True) + return json.dumps(sys_dict) + + get_system_info_dict_func = functools.partial(get_system_info_dict, **all_kwargs) + + system_dict_event = system_btn2.click(get_system_info_dict_func, + inputs=system_input, + outputs=system_text2, + api_name='system_info_dict' if allow_api else None, + queue=False, # queue to avoid spam + ) + + def get_hash(): + return kwargs['git_hash'] + + system_btn3.click(get_hash, + outputs=system_text3, + api_name='system_hash' if allow_api else None, + queue=False, + ) + # don't pass text_output, don't want to clear output, just stop it # cancel only stops outer generation, not inner generation or non-generation stop_btn.click(lambda: None, None, None, - cancels=[submit_event1d, submit_event1f, - submit_event2d, submit_event2f, - submit_event3d, submit_event3f, - submit_event_nochat], + cancels=submits1 + submits2 + submits3 + + submits4 + + [submit_event_nochat, submit_event_nochat2] + + [eventdb1, eventdb2, eventdb3, + eventdb4, eventdb5, eventdb6] + + [eventdb7, eventdb8, eventdb9] + , queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache, queue=False) - def count_chat_tokens(model_state1, chat1, prompt_type1): - if model_state1 and not isinstance(model_state1[1], str): - tokenizer = model_state1[1] - elif model_state0 and not isinstance(model_state0[1], str): - tokenizer = model_state0[1] + def count_chat_tokens(model_state1, chat1, prompt_type1, prompt_dict1, + memory_restriction_level1=0, + keep_sources_in_context1=False, + ): + if model_state1 and not isinstance(model_state1['tokenizer'], str): + tokenizer = model_state1['tokenizer'] + elif model_state0 and not isinstance(model_state0['tokenizer'], str): + tokenizer = model_state0['tokenizer'] else: tokenizer = None if tokenizer is not None: @@ -1425,18 +2018,28 @@ body.dark{#warning {background-color: #555555};} # fake user message to mimic bot() chat1 = copy.deepcopy(chat1) chat1 = chat1 + [['user_message1', None]] - context1 = history_to_context(chat1, langchain_mode1, prompt_type1, chat1) + model_max_length1 = tokenizer.model_max_length + context1 = history_to_context(chat1, langchain_mode1, prompt_type1, prompt_dict1, chat1, + model_max_length1, + memory_restriction_level1, keep_sources_in_context1) return str(tokenizer(context1, return_tensors="pt")['input_ids'].shape[1]) else: return "N/A" - count_chat_tokens_btn.click(fn=count_chat_tokens, inputs=[model_state, text_output, prompt_type], + count_chat_tokens_func = functools.partial(count_chat_tokens, + memory_restriction_level1=memory_restriction_level, + keep_sources_in_context1=kwargs['keep_sources_in_context']) + count_chat_tokens_btn.click(fn=count_chat_tokens, + inputs=[model_state, text_output, prompt_type, prompt_dict], outputs=chat_token_count, api_name='count_tokens' if allow_api else None) - demo.load(None, None, None, _js=get_dark_js() if kwargs['h2ocolors'] else None) + demo.load(None, None, None, _js=get_dark_js() if kwargs['h2ocolors'] and False else None) # light best demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open']) favicon_path = "h2o-logo.svg" + if not os.path.isfile(favicon_path): + print("favicon_path=%s not found" % favicon_path, flush=True) + favicon_path = None scheduler = BackgroundScheduler() scheduler.add_job(func=clear_torch_cache, trigger="interval", seconds=20) @@ -1445,6 +2048,7 @@ body.dark{#warning {background-color: #555555};} # FIXME: disable for gptj, langchain or gpt4all modify print itself # FIXME: and any multi-threaded/async print will enter model output! scheduler.add_job(func=ping, trigger="interval", seconds=60) + scheduler.add_job(func=ping_gpu, trigger="interval", seconds=60 * 10) scheduler.start() # import control @@ -1466,15 +2070,17 @@ body.dark{#warning {background-color: #555555};} input_args_list = ['model_state', 'my_db_state'] -def get_inputs_list(inputs_dict, model_lower): +def get_inputs_list(inputs_dict, model_lower, model_id=1): """ map gradio objects in locals() to inputs for evaluate(). :param inputs_dict: :param model_lower: + :param model_id: Which model (1 or 2) of 2 :return: """ inputs_list_names = list(inspect.signature(evaluate).parameters) inputs_list = [] + inputs_dict_out = {} for k in inputs_list_names: if k == 'kwargs': continue @@ -1483,8 +2089,18 @@ def get_inputs_list(inputs_dict, model_lower): continue if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']: continue + if model_id == 2: + if k == 'prompt_type': + k = 'prompt_type2' + if k == 'prompt_used': + k = 'prompt_used2' + if k == 'max_new_tokens': + k = 'max_new_tokens2' + if k == 'min_new_tokens': + k = 'min_new_tokens2' inputs_list.append(inputs_dict[k]) - return inputs_list + inputs_dict_out[k] = inputs_dict[k] + return inputs_list, inputs_dict_out def get_sources(db1, langchain_mode, dbs=None, docs_state0=None): @@ -1496,18 +2112,22 @@ def get_sources(db1, langchain_mode, dbs=None, docs_state0=None): " Ask jon.mckinney@h2o.ai for file if required." source_list = [] elif langchain_mode == 'MyData' and len(db1) > 0 and db1[0] is not None: - db_get = db1[0].get() - source_list = sorted(set([x['source'] for x in db_get['metadatas']])) + from gpt_langchain import get_metadatas + metadatas = get_metadatas(db1[0]) + source_list = sorted(set([x['source'] for x in metadatas])) source_files_added = '\n'.join(source_list) elif langchain_mode in dbs and dbs[langchain_mode] is not None: + from gpt_langchain import get_metadatas db1 = dbs[langchain_mode] - db_get = db1.get() - source_list = sorted(set([x['source'] for x in db_get['metadatas']])) + metadatas = get_metadatas(db1) + source_list = sorted(set([x['source'] for x in metadatas])) source_files_added = '\n'.join(source_list) else: source_list = [] source_files_added = "None" - sources_file = 'sources_%s_%s' % (langchain_mode, str(uuid.uuid4())) + sources_dir = "sources_dir" + makedirs(sources_dir) + sources_file = os.path.join(sources_dir, 'sources_%s_%s' % (langchain_mode, str(uuid.uuid4()))) with open(sources_file, "wt") as f: f.write(source_files_added) source_list = docs_state0 + source_list @@ -1534,21 +2154,35 @@ def update_user_db(file, db1, x, y, *args, dbs=None, langchain_mode='UserData',