Spaces:
Running
Running
pseudotensor
commited on
Commit
·
80d4e55
1
Parent(s):
1b1628c
Update with h2oGPT hash 8fc21162cdbe751ad32abb13f4e15e090d7af7ce
Browse files- app.py +49 -39
- client_test.py +56 -28
app.py
CHANGED
@@ -83,6 +83,7 @@ def main(
|
|
83 |
# set to True to load --base_model after client logs in,
|
84 |
# to be able to free GPU memory when model is swapped
|
85 |
login_mode_if_model0: bool = False,
|
|
|
86 |
|
87 |
sanitize_user_prompt: bool = True,
|
88 |
sanitize_bot_response: bool = True,
|
@@ -116,6 +117,9 @@ def main(
|
|
116 |
# must override share if in spaces
|
117 |
share = False
|
118 |
save_dir = os.getenv('SAVE_DIR', save_dir)
|
|
|
|
|
|
|
119 |
|
120 |
# get defaults
|
121 |
model_lower = base_model.lower()
|
@@ -726,12 +730,12 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
726 |
placeholder=kwargs['placeholder_input'])
|
727 |
submit_nochat = gr.Button("Submit")
|
728 |
flag_btn_nochat = gr.Button("Flag")
|
729 |
-
if kwargs['
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
|
736 |
col_chat = gr.Column(visible=kwargs['chat'])
|
737 |
with col_chat:
|
@@ -751,19 +755,19 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
751 |
with gr.Row():
|
752 |
clear = gr.Button("New Conversation")
|
753 |
flag_btn = gr.Button("Flag")
|
754 |
-
if kwargs['
|
755 |
-
|
756 |
-
with gr.
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
score_text = gr.Textbox("Response Score: NA", show_label=False)
|
768 |
score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False)
|
769 |
retry = gr.Button("Regenerate")
|
@@ -942,7 +946,6 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
942 |
fun = partial(evaluate,
|
943 |
**kwargs_evaluate)
|
944 |
fun2 = partial(evaluate,
|
945 |
-
model_state2,
|
946 |
**kwargs_evaluate)
|
947 |
|
948 |
dark_mode_btn = gr.Button("Dark Mode", variant="primary").style(
|
@@ -1042,25 +1045,31 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
1042 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
1043 |
return 'Response Score: {:.1%}'.format(score)
|
1044 |
|
|
|
|
|
1045 |
if kwargs['score_model']:
|
1046 |
-
|
1047 |
-
|
1048 |
-
|
1049 |
-
|
1050 |
-
|
1051 |
-
|
1052 |
-
|
1053 |
-
|
|
|
|
|
|
|
|
|
1054 |
|
1055 |
-
|
1056 |
-
|
1057 |
-
|
1058 |
-
|
1059 |
-
|
1060 |
-
|
1061 |
-
|
1062 |
-
|
1063 |
-
|
1064 |
|
1065 |
def user(*args, undo=False, sanitize_user_prompt=True, model2=False):
|
1066 |
"""
|
@@ -1416,14 +1425,15 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
1416 |
stop_btn.click(lambda: None, None, None,
|
1417 |
cancels=[submit_event_nochat, submit_event, submit_event2, submit_event3],
|
1418 |
queue=False, api_name='stop').then(clear_torch_cache)
|
1419 |
-
demo.load(None,None,None,_js=dark_js)
|
1420 |
|
1421 |
demo.queue(concurrency_count=1)
|
1422 |
favicon_path = "h2o-logo.svg"
|
1423 |
demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True,
|
1424 |
favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True)
|
1425 |
print("Started GUI", flush=True)
|
1426 |
-
|
|
|
1427 |
|
1428 |
|
1429 |
input_args_list = ['model_state']
|
|
|
83 |
# set to True to load --base_model after client logs in,
|
84 |
# to be able to free GPU memory when model is swapped
|
85 |
login_mode_if_model0: bool = False,
|
86 |
+
block_gradio_exit: bool = True,
|
87 |
|
88 |
sanitize_user_prompt: bool = True,
|
89 |
sanitize_bot_response: bool = True,
|
|
|
117 |
# must override share if in spaces
|
118 |
share = False
|
119 |
save_dir = os.getenv('SAVE_DIR', save_dir)
|
120 |
+
score_model = os.getenv('SCORE_MODEL', score_model)
|
121 |
+
if score_model == 'None':
|
122 |
+
score_model = ''
|
123 |
|
124 |
# get defaults
|
125 |
model_lower = base_model.lower()
|
|
|
730 |
placeholder=kwargs['placeholder_input'])
|
731 |
submit_nochat = gr.Button("Submit")
|
732 |
flag_btn_nochat = gr.Button("Flag")
|
733 |
+
if not kwargs['auto_score']:
|
734 |
+
with gr.Column(visible=kwargs['score_model']):
|
735 |
+
score_btn_nochat = gr.Button("Score last prompt & response")
|
736 |
+
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
|
737 |
+
else:
|
738 |
+
with gr.Column(visible=kwargs['score_model']):
|
739 |
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
|
740 |
col_chat = gr.Column(visible=kwargs['chat'])
|
741 |
with col_chat:
|
|
|
755 |
with gr.Row():
|
756 |
clear = gr.Button("New Conversation")
|
757 |
flag_btn = gr.Button("Flag")
|
758 |
+
if not kwargs['auto_score']: # FIXME: For checkbox model2
|
759 |
+
with gr.Column(visible=kwargs['score_model']):
|
760 |
+
with gr.Row():
|
761 |
+
score_btn = gr.Button("Score last prompt & response").style(
|
762 |
+
full_width=False, size='sm')
|
763 |
+
score_text = gr.Textbox("Response Score: NA", show_label=False)
|
764 |
+
score_res2 = gr.Row(visible=False)
|
765 |
+
with score_res2:
|
766 |
+
score_btn2 = gr.Button("Score last prompt & response 2").style(
|
767 |
+
full_width=False, size='sm')
|
768 |
+
score_text2 = gr.Textbox("Response Score2: NA", show_label=False)
|
769 |
+
else:
|
770 |
+
with gr.Column(visible=kwargs['score_model']):
|
771 |
score_text = gr.Textbox("Response Score: NA", show_label=False)
|
772 |
score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False)
|
773 |
retry = gr.Button("Regenerate")
|
|
|
946 |
fun = partial(evaluate,
|
947 |
**kwargs_evaluate)
|
948 |
fun2 = partial(evaluate,
|
|
|
949 |
**kwargs_evaluate)
|
950 |
|
951 |
dark_mode_btn = gr.Button("Dark Mode", variant="primary").style(
|
|
|
1045 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
1046 |
return 'Response Score: {:.1%}'.format(score)
|
1047 |
|
1048 |
+
def noop_score_last_response(*args, **kwargs):
|
1049 |
+
return "Response Score: Disabled"
|
1050 |
if kwargs['score_model']:
|
1051 |
+
score_fun = score_last_response
|
1052 |
+
else:
|
1053 |
+
score_fun = noop_score_last_response
|
1054 |
+
|
1055 |
+
score_args = dict(fn=score_fun,
|
1056 |
+
inputs=inputs_list + [text_output],
|
1057 |
+
outputs=[score_text],
|
1058 |
+
)
|
1059 |
+
score_args2 = dict(fn=partial(score_fun, model2=True),
|
1060 |
+
inputs=inputs_list + [text_output2],
|
1061 |
+
outputs=[score_text2],
|
1062 |
+
)
|
1063 |
|
1064 |
+
score_args_nochat = dict(fn=partial(score_fun, nochat=True),
|
1065 |
+
inputs=inputs_list + [text_output_nochat],
|
1066 |
+
outputs=[score_text_nochat],
|
1067 |
+
)
|
1068 |
+
if not kwargs['auto_score']:
|
1069 |
+
score_event = score_btn.click(**score_args, queue=stream_output, api_name='score') \
|
1070 |
+
.then(**score_args2, queue=stream_output, api_name='score2')
|
1071 |
+
score_event_nochat = score_btn_nochat.click(**score_args_nochat, queue=stream_output,
|
1072 |
+
api_name='score_nochat')
|
1073 |
|
1074 |
def user(*args, undo=False, sanitize_user_prompt=True, model2=False):
|
1075 |
"""
|
|
|
1425 |
stop_btn.click(lambda: None, None, None,
|
1426 |
cancels=[submit_event_nochat, submit_event, submit_event2, submit_event3],
|
1427 |
queue=False, api_name='stop').then(clear_torch_cache)
|
1428 |
+
demo.load(None,None,None, _js=dark_js)
|
1429 |
|
1430 |
demo.queue(concurrency_count=1)
|
1431 |
favicon_path = "h2o-logo.svg"
|
1432 |
demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True,
|
1433 |
favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True)
|
1434 |
print("Started GUI", flush=True)
|
1435 |
+
if kwargs['block_gradio_exit']:
|
1436 |
+
demo.block_thread()
|
1437 |
|
1438 |
|
1439 |
input_args_list = ['model_state']
|
client_test.py
CHANGED
@@ -13,43 +13,69 @@ Currently, this will force model to be on a single GPU.
|
|
13 |
Then run this client as:
|
14 |
|
15 |
python client_test.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"""
|
17 |
|
18 |
debug = False
|
19 |
|
20 |
import os
|
21 |
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
# streaming output is supported, loops over and outputs each generation in streaming mode
|
32 |
-
# but leave stream_output=False for simple input/output mode
|
33 |
-
stream_output = False
|
34 |
-
prompt_type = 'human_bot'
|
35 |
-
temperature = 0.1
|
36 |
-
top_p = 0.75
|
37 |
-
top_k = 40
|
38 |
-
num_beams = 1
|
39 |
-
max_new_tokens = 50
|
40 |
-
min_new_tokens = 0
|
41 |
-
early_stopping = False
|
42 |
-
max_time = 20
|
43 |
-
repetition_penalty = 1.0
|
44 |
-
num_return_sequences = 1
|
45 |
-
do_sample = True
|
46 |
-
# only these 2 below used if pass chat=False
|
47 |
-
chat = False
|
48 |
-
instruction_nochat = "Who are you?"
|
49 |
-
iinput_nochat = ''
|
50 |
|
51 |
|
52 |
def test_client_basic():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
args = [instruction,
|
54 |
iinput,
|
55 |
context,
|
@@ -71,12 +97,14 @@ def test_client_basic():
|
|
71 |
iinput_nochat,
|
72 |
]
|
73 |
api_name = '/submit_nochat'
|
|
|
74 |
res = client.predict(
|
75 |
*tuple(args),
|
76 |
api_name=api_name,
|
77 |
)
|
78 |
res_dict = dict(instruction_nochat=instruction_nochat, iinput_nochat=iinput_nochat, response=md_to_text(res))
|
79 |
print(res_dict)
|
|
|
80 |
|
81 |
|
82 |
import markdown # pip install markdown
|
|
|
13 |
Then run this client as:
|
14 |
|
15 |
python client_test.py
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
For HF spaces:
|
20 |
+
|
21 |
+
HOST="https://h2oai-h2ogpt-chatbot.hf.space" python client_test.py
|
22 |
+
|
23 |
+
Result:
|
24 |
+
|
25 |
+
Loaded as API: https://h2oai-h2ogpt-chatbot.hf.space ✔
|
26 |
+
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a large language model developed by LAION.'}
|
27 |
+
|
28 |
+
|
29 |
+
For demo:
|
30 |
+
|
31 |
+
HOST="https://gpt.h2o.ai" python client_test.py
|
32 |
+
|
33 |
+
Result:
|
34 |
+
|
35 |
+
Loaded as API: https://gpt.h2o.ai ✔
|
36 |
+
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a chatbot created by LAION.'}
|
37 |
+
|
38 |
"""
|
39 |
|
40 |
debug = False
|
41 |
|
42 |
import os
|
43 |
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
|
44 |
+
|
45 |
+
|
46 |
+
def get_client():
|
47 |
+
from gradio_client import Client
|
48 |
+
|
49 |
+
client = Client(os.getenv('HOST', "http://localhost:7860"))
|
50 |
+
if debug:
|
51 |
+
print(client.view_api(all_endpoints=True))
|
52 |
+
return client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
|
55 |
def test_client_basic():
|
56 |
+
instruction = '' # only for chat=True
|
57 |
+
iinput = '' # only for chat=True
|
58 |
+
context = ''
|
59 |
+
# streaming output is supported, loops over and outputs each generation in streaming mode
|
60 |
+
# but leave stream_output=False for simple input/output mode
|
61 |
+
stream_output = False
|
62 |
+
prompt_type = 'human_bot'
|
63 |
+
temperature = 0.1
|
64 |
+
top_p = 0.75
|
65 |
+
top_k = 40
|
66 |
+
num_beams = 1
|
67 |
+
max_new_tokens = 50
|
68 |
+
min_new_tokens = 0
|
69 |
+
early_stopping = False
|
70 |
+
max_time = 20
|
71 |
+
repetition_penalty = 1.0
|
72 |
+
num_return_sequences = 1
|
73 |
+
do_sample = True
|
74 |
+
# only these 2 below used if pass chat=False
|
75 |
+
chat = False
|
76 |
+
instruction_nochat = "Who are you?"
|
77 |
+
iinput_nochat = ''
|
78 |
+
|
79 |
args = [instruction,
|
80 |
iinput,
|
81 |
context,
|
|
|
97 |
iinput_nochat,
|
98 |
]
|
99 |
api_name = '/submit_nochat'
|
100 |
+
client = get_client()
|
101 |
res = client.predict(
|
102 |
*tuple(args),
|
103 |
api_name=api_name,
|
104 |
)
|
105 |
res_dict = dict(instruction_nochat=instruction_nochat, iinput_nochat=iinput_nochat, response=md_to_text(res))
|
106 |
print(res_dict)
|
107 |
+
return res_dict
|
108 |
|
109 |
|
110 |
import markdown # pip install markdown
|