diff --git "a/gradio_runner.py" "b/gradio_runner.py"
deleted file mode 100644--- "a/gradio_runner.py"
+++ /dev/null
@@ -1,4594 +0,0 @@
-import ast
-import copy
-import functools
-import inspect
-import itertools
-import json
-import os
-import pprint
-import random
-import shutil
-import sys
-import time
-import traceback
-import uuid
-import filelock
-import numpy as np
-import pandas as pd
-import requests
-from iterators import TimeoutIterator
-
-from gradio_utils.css import get_css
-from gradio_utils.prompt_form import make_chatbots
-
-# This is a hack to prevent Gradio from phoning home when it gets imported
-os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
-
-
-def my_get(url, **kwargs):
- print('Gradio HTTP request redirected to localhost :)', flush=True)
- kwargs.setdefault('allow_redirects', True)
- return requests.api.request('get', 'http://127.0.0.1/', **kwargs)
-
-
-original_get = requests.get
-requests.get = my_get
-import gradio as gr
-
-requests.get = original_get
-
-
-def fix_pydantic_duplicate_validators_error():
- try:
- from pydantic import class_validators
-
- class_validators.in_ipython = lambda: True # type: ignore[attr-defined]
- except ImportError:
- pass
-
-
-fix_pydantic_duplicate_validators_error()
-
-from enums import DocumentSubset, no_model_str, no_lora_str, no_server_str, LangChainAction, LangChainMode, \
- DocumentChoice, langchain_modes_intrinsic, LangChainTypes, langchain_modes_non_db, gr_to_lg, invalid_key_msg, \
- LangChainAgent, docs_ordering_types
-from gradio_themes import H2oTheme, SoftTheme, get_h2o_title, get_simple_title, \
- get_dark_js, get_heap_js, wrap_js_to_lambda, \
- spacing_xsm, radius_xsm, text_xsm
-from prompter import prompt_type_to_model_name, prompt_types_strings, inv_prompt_type_to_model_lower, non_hf_types, \
- get_prompt
-from utils import flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print, \
- ping, makedirs, get_kwargs, system_info, ping_gpu, get_url, get_local_ip, \
- save_generate_output, url_alive, remove, dict_to_html, text_to_html, lg_to_gr, str_to_dict, have_serpapi
-from gen import get_model, languages_covered, evaluate, score_qa, inputs_kwargs_list, \
- get_max_max_new_tokens, get_minmax_top_k_docs, history_to_context, langchain_actions, langchain_agents_list, \
- evaluate_fake, merge_chat_conversation_history
-from evaluate_params import eval_func_param_names, no_default_param_names, eval_func_param_names_defaults, \
- input_args_list, key_overrides
-
-from apscheduler.schedulers.background import BackgroundScheduler
-
-
-def fix_text_for_gradio(text, fix_new_lines=False, fix_latex_dollars=True):
- if fix_latex_dollars:
- ts = text.split('```')
- for parti, part in enumerate(ts):
- inside = parti % 2 == 1
- if not inside:
- ts[parti] = ts[parti].replace('$', '﹩')
- text = '```'.join(ts)
-
- if fix_new_lines:
- # let Gradio handle code, since got improved recently
- ## FIXME: below conflicts with Gradio, but need to see if can handle multiple \n\n\n etc. properly as is.
- # ensure good visually, else markdown ignores multiple \n
- # handle code blocks
- ts = text.split('```')
- for parti, part in enumerate(ts):
- inside = parti % 2 == 1
- if not inside:
- ts[parti] = ts[parti].replace('\n', '
')
- text = '```'.join(ts)
- return text
-
-
-def is_valid_key(enforce_h2ogpt_api_key, h2ogpt_api_keys, h2ogpt_key1, requests_state1=None):
- valid_key = False
- if not enforce_h2ogpt_api_key:
- # no token barrier
- valid_key = 'not enforced'
- else:
- if isinstance(h2ogpt_api_keys, list) and h2ogpt_key1 in h2ogpt_api_keys:
- # passed token barrier
- valid_key = True
- elif isinstance(h2ogpt_api_keys, str) and os.path.isfile(h2ogpt_api_keys):
- with filelock.FileLock(h2ogpt_api_keys + '.lock'):
- with open(h2ogpt_api_keys, 'rt') as f:
- h2ogpt_api_keys = json.load(f)
- if h2ogpt_key1 in h2ogpt_api_keys:
- valid_key = True
- if isinstance(requests_state1, dict) and 'username' in requests_state1 and requests_state1['username']:
- # no UI limit currently
- valid_key = True
- return valid_key
-
-
-def go_gradio(**kwargs):
- allow_api = kwargs['allow_api']
- is_public = kwargs['is_public']
- is_hf = kwargs['is_hf']
- memory_restriction_level = kwargs['memory_restriction_level']
- n_gpus = kwargs['n_gpus']
- admin_pass = kwargs['admin_pass']
- model_states = kwargs['model_states']
- dbs = kwargs['dbs']
- db_type = kwargs['db_type']
- visible_langchain_actions = kwargs['visible_langchain_actions']
- visible_langchain_agents = kwargs['visible_langchain_agents']
- allow_upload_to_user_data = kwargs['allow_upload_to_user_data']
- allow_upload_to_my_data = kwargs['allow_upload_to_my_data']
- enable_sources_list = kwargs['enable_sources_list']
- enable_url_upload = kwargs['enable_url_upload']
- enable_text_upload = kwargs['enable_text_upload']
- use_openai_embedding = kwargs['use_openai_embedding']
- hf_embedding_model = kwargs['hf_embedding_model']
- load_db_if_exists = kwargs['load_db_if_exists']
- migrate_embedding_model = kwargs['migrate_embedding_model']
- auto_migrate_db = kwargs['auto_migrate_db']
- captions_model = kwargs['captions_model']
- caption_loader = kwargs['caption_loader']
- doctr_loader = kwargs['doctr_loader']
-
- n_jobs = kwargs['n_jobs']
- verbose = kwargs['verbose']
-
- # for dynamic state per user session in gradio
- model_state0 = kwargs['model_state0']
- score_model_state0 = kwargs['score_model_state0']
- my_db_state0 = kwargs['my_db_state0']
- selection_docs_state0 = kwargs['selection_docs_state0']
- visible_models_state0 = kwargs['visible_models_state0']
- # For Heap analytics
- is_heap_analytics_enabled = kwargs['enable_heap_analytics']
- heap_app_id = kwargs['heap_app_id']
-
- # easy update of kwargs needed for evaluate() etc.
- queue = True
- allow_upload = allow_upload_to_user_data or allow_upload_to_my_data
- allow_upload_api = allow_api and allow_upload
-
- kwargs.update(locals())
-
- # import control
- if kwargs['langchain_mode'] != 'Disabled':
- from gpt_langchain import file_types, have_arxiv
- else:
- have_arxiv = False
- file_types = []
-
- if 'mbart-' in kwargs['model_lower']:
- instruction_label_nochat = "Text to translate"
- else:
- instruction_label_nochat = "Instruction (Shift-Enter or push Submit to send message," \
- " use Enter for multiple input lines)"
-
- title = 'h2oGPT'
- if kwargs['visible_h2ogpt_header']:
- description = """h2oGPT LLM Leaderboard LLM Studio
CodeLlama
🤗 Models"""
- else:
- description = None
- description_bottom = "If this host is busy, try
[Multi-Model](https://gpt.h2o.ai)
[CodeLlama](https://codellama.h2o.ai)
[Llama2 70B](https://llama.h2o.ai)
[Falcon 40B](https://falcon.h2o.ai)
[HF Spaces1](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot)
[HF Spaces2](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)
"
- if is_hf:
- description_bottom += ''''''
- task_info_md = ''
- css_code = get_css(kwargs)
-
- if kwargs['gradio_offline_level'] >= 0:
- # avoid GoogleFont that pulls from internet
- if kwargs['gradio_offline_level'] == 1:
- # front end would still have to download fonts or have cached it at some point
- base_font = 'Source Sans Pro'
- else:
- base_font = 'Helvetica'
- theme_kwargs = dict(font=(base_font, 'ui-sans-serif', 'system-ui', 'sans-serif'),
- font_mono=('IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'))
- else:
- theme_kwargs = dict()
- if kwargs['gradio_size'] == 'xsmall':
- theme_kwargs.update(dict(spacing_size=spacing_xsm, text_size=text_xsm, radius_size=radius_xsm))
- elif kwargs['gradio_size'] in [None, 'small']:
- theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_sm, text_size=gr.themes.sizes.text_sm,
- radius_size=gr.themes.sizes.spacing_sm))
- elif kwargs['gradio_size'] == 'large':
- theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_lg, text_size=gr.themes.sizes.text_lg),
- radius_size=gr.themes.sizes.spacing_lg)
- elif kwargs['gradio_size'] == 'medium':
- theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_md, text_size=gr.themes.sizes.text_md,
- radius_size=gr.themes.sizes.spacing_md))
-
- theme = H2oTheme(**theme_kwargs) if kwargs['h2ocolors'] else SoftTheme(**theme_kwargs)
- demo = gr.Blocks(theme=theme, css=css_code, title="h2oGPT", analytics_enabled=False)
- callback = gr.CSVLogger()
-
- model_options0 = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options']
- if kwargs['base_model'].strip() not in model_options0:
- model_options0 = [kwargs['base_model'].strip()] + model_options0
- lora_options = kwargs['extra_lora_options']
- if kwargs['lora_weights'].strip() not in lora_options:
- lora_options = [kwargs['lora_weights'].strip()] + lora_options
- server_options = kwargs['extra_server_options']
- if kwargs['inference_server'].strip() not in server_options:
- server_options = [kwargs['inference_server'].strip()] + server_options
- if os.getenv('OPENAI_API_KEY'):
- if 'openai_chat' not in server_options:
- server_options += ['openai_chat']
- if 'openai' not in server_options:
- server_options += ['openai']
-
- # always add in no lora case
- # add fake space so doesn't go away in gradio dropdown
- model_options0 = [no_model_str] + sorted(model_options0)
- lora_options = [no_lora_str] + sorted(lora_options)
- server_options = [no_server_str] + sorted(server_options)
- # always add in no model case so can free memory
- # add fake space so doesn't go away in gradio dropdown
-
- # transcribe, will be detranscribed before use by evaluate()
- if not kwargs['base_model'].strip():
- kwargs['base_model'] = no_model_str
-
- if not kwargs['lora_weights'].strip():
- kwargs['lora_weights'] = no_lora_str
-
- if not kwargs['inference_server'].strip():
- kwargs['inference_server'] = no_server_str
-
- # transcribe for gradio
- kwargs['gpu_id'] = str(kwargs['gpu_id'])
-
- no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]'
- output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get(
- 'base_model') else no_model_msg
- output_label0_model2 = no_model_msg
-
- def update_prompt(prompt_type1, prompt_dict1, model_state1, which_model=0):
- if not prompt_type1 or which_model != 0:
- # keep prompt_type and prompt_dict in sync if possible
- prompt_type1 = kwargs.get('prompt_type', prompt_type1)
- prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1)
- # prefer model specific prompt type instead of global one
- if not prompt_type1 or which_model != 0:
- prompt_type1 = model_state1.get('prompt_type', prompt_type1)
- prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1)
-
- if not prompt_dict1 or which_model != 0:
- # if still not defined, try to get
- prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1)
- if not prompt_dict1 or which_model != 0:
- prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1)
- return prompt_type1, prompt_dict1
-
- def visible_models_to_model_choice(visible_models1):
- if isinstance(visible_models1, list):
- assert len(
- visible_models1) >= 1, "Invalid visible_models1=%s, can only be single entry" % visible_models1
- # just take first
- model_active_choice1 = visible_models1[0]
- elif isinstance(visible_models1, (str, int)):
- model_active_choice1 = visible_models1
- else:
- assert isinstance(visible_models1, type(None)), "Invalid visible_models1=%s" % visible_models1
- model_active_choice1 = visible_models1
- if model_active_choice1 is not None:
- if isinstance(model_active_choice1, str):
- base_model_list = [x['base_model'] for x in model_states]
- if model_active_choice1 in base_model_list:
- # if dups, will just be first one
- model_active_choice1 = base_model_list.index(model_active_choice1)
- else:
- # NOTE: Could raise, but sometimes raising in certain places fails too hard and requires UI restart
- model_active_choice1 = 0
- else:
- model_active_choice1 = 0
- return model_active_choice1
-
- default_kwargs = {k: kwargs[k] for k in eval_func_param_names_defaults}
- # ensure prompt_type consistent with prep_bot(), so nochat API works same way
- default_kwargs['prompt_type'], default_kwargs['prompt_dict'] = \
- update_prompt(default_kwargs['prompt_type'], default_kwargs['prompt_dict'],
- model_state1=model_state0,
- which_model=visible_models_to_model_choice(kwargs['visible_models']))
- for k in no_default_param_names:
- default_kwargs[k] = ''
-
- def dummy_fun(x):
- # need dummy function to block new input from being sent until output is done,
- # else gets input_list at time of submit that is old, and shows up as truncated in chatbot
- return x
-
- def update_auth_selection(auth_user, selection_docs_state1, save=False):
- # in-place update of both
- if 'selection_docs_state' not in auth_user:
- auth_user['selection_docs_state'] = selection_docs_state0
- for k, v in auth_user['selection_docs_state'].items():
- if isinstance(selection_docs_state1[k], dict):
- if save:
- auth_user['selection_docs_state'][k].clear()
- auth_user['selection_docs_state'][k].update(selection_docs_state1[k])
- else:
- selection_docs_state1[k].clear()
- selection_docs_state1[k].update(auth_user['selection_docs_state'][k])
- elif isinstance(selection_docs_state1[k], list):
- if save:
- auth_user['selection_docs_state'][k].clear()
- auth_user['selection_docs_state'][k].extend(selection_docs_state1[k])
- else:
- selection_docs_state1[k].clear()
- selection_docs_state1[k].extend(auth_user['selection_docs_state'][k])
- else:
- raise RuntimeError("Bad type: %s" % selection_docs_state1[k])
-
- # BEGIN AUTH THINGS
- def auth_func(username1, password1, auth_pairs=None, auth_filename=None,
- auth_access=None,
- auth_freeze=None,
- guest_name=None,
- selection_docs_state1=None,
- selection_docs_state00=None,
- **kwargs):
- assert auth_freeze is not None
- if selection_docs_state1 is None:
- selection_docs_state1 = selection_docs_state00
- assert selection_docs_state1 is not None
- assert auth_filename and isinstance(auth_filename, str), "Auth file must be a non-empty string, got: %s" % str(
- auth_filename)
- if auth_access == 'open' and username1 == guest_name:
- return True
- if username1 == '':
- # some issue with login
- return False
- with filelock.FileLock(auth_filename + '.lock'):
- auth_dict = {}
- if os.path.isfile(auth_filename):
- try:
- with open(auth_filename, 'rt') as f:
- auth_dict = json.load(f)
- except json.decoder.JSONDecodeError as e:
- print("Auth exception: %s" % str(e), flush=True)
- shutil.move(auth_filename, auth_filename + '.bak' + str(uuid.uuid4()))
- auth_dict = {}
- if username1 in auth_dict and username1 in auth_pairs:
- if password1 == auth_dict[username1]['password'] and password1 == auth_pairs[username1]:
- auth_user = auth_dict[username1]
- update_auth_selection(auth_user, selection_docs_state1)
- save_auth_dict(auth_dict, auth_filename)
- return True
- else:
- return False
- elif username1 in auth_dict:
- if password1 == auth_dict[username1]['password']:
- auth_user = auth_dict[username1]
- update_auth_selection(auth_user, selection_docs_state1)
- save_auth_dict(auth_dict, auth_filename)
- return True
- else:
- return False
- elif username1 in auth_pairs:
- # copy over CLI auth to file so only one state to manage
- auth_dict[username1] = dict(password=auth_pairs[username1], userid=str(uuid.uuid4()))
- auth_user = auth_dict[username1]
- update_auth_selection(auth_user, selection_docs_state1)
- save_auth_dict(auth_dict, auth_filename)
- return True
- else:
- if auth_access == 'closed':
- return False
- # open access
- auth_dict[username1] = dict(password=password1, userid=str(uuid.uuid4()))
- auth_user = auth_dict[username1]
- update_auth_selection(auth_user, selection_docs_state1)
- save_auth_dict(auth_dict, auth_filename)
- if auth_access == 'open':
- return True
- else:
- raise RuntimeError("Invalid auth_access: %s" % auth_access)
-
- def auth_func_open(*args, **kwargs):
- return True
-
- def get_username(requests_state1):
- username1 = None
- if 'username' in requests_state1:
- username1 = requests_state1['username']
- return username1
-
- def get_userid_auth_func(requests_state1, auth_filename=None, auth_access=None, guest_name=None, **kwargs):
- if auth_filename and isinstance(auth_filename, str):
- username1 = get_username(requests_state1)
- if username1:
- if username1 == guest_name:
- return str(uuid.uuid4())
- with filelock.FileLock(auth_filename + '.lock'):
- if os.path.isfile(auth_filename):
- with open(auth_filename, 'rt') as f:
- auth_dict = json.load(f)
- if username1 in auth_dict:
- return auth_dict[username1]['userid']
- # if here, then not persistently associated with username1,
- # but should only be one-time asked if going to persist within a single session!
- return str(uuid.uuid4())
-
- get_userid_auth = functools.partial(get_userid_auth_func,
- auth_filename=kwargs['auth_filename'],
- auth_access=kwargs['auth_access'],
- guest_name=kwargs['guest_name'],
- )
- if kwargs['auth_access'] == 'closed':
- auth_message1 = "Closed access"
- else:
- auth_message1 = "WELCOME! Open access" \
- " (%s/%s or any unique user/pass)" % (kwargs['guest_name'], kwargs['guest_name'])
-
- if kwargs['auth_message'] is not None:
- auth_message = kwargs['auth_message']
- else:
- auth_message = auth_message1
-
- # always use same callable
- auth_pairs0 = {}
- if isinstance(kwargs['auth'], list):
- for k, v in kwargs['auth']:
- auth_pairs0[k] = v
- authf = functools.partial(auth_func,
- auth_pairs=auth_pairs0,
- auth_filename=kwargs['auth_filename'],
- auth_access=kwargs['auth_access'],
- auth_freeze=kwargs['auth_freeze'],
- guest_name=kwargs['guest_name'],
- selection_docs_state00=copy.deepcopy(selection_docs_state0))
-
- def get_request_state(requests_state1, request, db1s):
- # if need to get state, do it now
- if not requests_state1:
- requests_state1 = requests_state0.copy()
- if requests:
- if not requests_state1.get('headers', '') and hasattr(request, 'headers'):
- requests_state1.update(request.headers)
- if not requests_state1.get('host', '') and hasattr(request, 'host'):
- requests_state1.update(dict(host=request.host))
- if not requests_state1.get('host2', '') and hasattr(request, 'client') and hasattr(request.client, 'host'):
- requests_state1.update(dict(host2=request.client.host))
- if not requests_state1.get('username', '') and hasattr(request, 'username'):
- from src.gpt_langchain import get_username_direct
- # use already-defined username instead of keep changing to new uuid
- # should be same as in requests_state1
- db_username = get_username_direct(db1s)
- requests_state1.update(dict(username=request.username or db_username or str(uuid.uuid4())))
- requests_state1 = {str(k): str(v) for k, v in requests_state1.items()}
- return requests_state1
-
- def user_state_setup(db1s, requests_state1, request: gr.Request, *args):
- requests_state1 = get_request_state(requests_state1, request, db1s)
- from src.gpt_langchain import set_userid
- set_userid(db1s, requests_state1, get_userid_auth)
- args_list = [db1s, requests_state1] + list(args)
- return tuple(args_list)
-
- # END AUTH THINGS
-
- def allow_empty_instruction(langchain_mode1, document_subset1, langchain_action1):
- allow = False
- allow |= langchain_action1 not in LangChainAction.QUERY.value
- allow |= document_subset1 in DocumentSubset.TopKSources.name
- if langchain_mode1 in [LangChainMode.LLM.value]:
- allow = False
- return allow
-
- image_loaders_options0, image_loaders_options, \
- pdf_loaders_options0, pdf_loaders_options, \
- url_loaders_options0, url_loaders_options = lg_to_gr(**kwargs)
- jq_schema0 = '.[]'
-
- with demo:
- # avoid actual model/tokenizer here or anything that would be bad to deepcopy
- # https://github.com/gradio-app/gradio/issues/3558
- model_state = gr.State(
- dict(model='model', tokenizer='tokenizer', device=kwargs['device'],
- base_model=kwargs['base_model'],
- tokenizer_base_model=kwargs['tokenizer_base_model'],
- lora_weights=kwargs['lora_weights'],
- inference_server=kwargs['inference_server'],
- prompt_type=kwargs['prompt_type'],
- prompt_dict=kwargs['prompt_dict'],
- )
- )
-
- def update_langchain_mode_paths(selection_docs_state1):
- dup = selection_docs_state1['langchain_mode_paths'].copy()
- for k, v in dup.items():
- if k not in selection_docs_state1['langchain_modes']:
- selection_docs_state1['langchain_mode_paths'].pop(k)
- for k in selection_docs_state1['langchain_modes']:
- if k not in selection_docs_state1['langchain_mode_types']:
- # if didn't specify shared, then assume scratch if didn't login or personal if logged in
- selection_docs_state1['langchain_mode_types'][k] = LangChainTypes.PERSONAL.value
- return selection_docs_state1
-
- # Setup some gradio states for per-user dynamic state
- model_state2 = gr.State(kwargs['model_state_none'].copy())
- model_options_state = gr.State([model_options0])
- lora_options_state = gr.State([lora_options])
- server_options_state = gr.State([server_options])
- my_db_state = gr.State(my_db_state0)
- chat_state = gr.State({})
- docs_state00 = kwargs['document_choice'] + [DocumentChoice.ALL.value]
- docs_state0 = []
- [docs_state0.append(x) for x in docs_state00 if x not in docs_state0]
- docs_state = gr.State(docs_state0)
- viewable_docs_state0 = []
- viewable_docs_state = gr.State(viewable_docs_state0)
- selection_docs_state0 = update_langchain_mode_paths(selection_docs_state0)
- selection_docs_state = gr.State(selection_docs_state0)
- requests_state0 = dict(headers='', host='', username='')
- requests_state = gr.State(requests_state0)
-
- if description is not None:
- gr.Markdown(f"""
- {get_h2o_title(title, description) if kwargs['h2ocolors'] else get_simple_title(title, description)}
- """)
-
- # go button visible if
- base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0']
- go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary")
-
- nas = ' '.join(['NA'] * len(kwargs['model_states']))
- res_value = "Response Score: NA" if not kwargs[
- 'model_lock'] else "Response Scores: %s" % nas
-
- user_can_do_sum = kwargs['langchain_mode'] != LangChainMode.DISABLED.value and \
- (kwargs['visible_side_bar'] or kwargs['visible_system_tab'])
- if user_can_do_sum:
- extra_prompt_form = ". For summarization, no query required, just click submit"
- else:
- extra_prompt_form = ""
- if kwargs['input_lines'] > 1:
- instruction_label = "Shift-Enter to Submit, Enter for more lines%s" % extra_prompt_form
- else:
- instruction_label = "Enter to Submit, Shift-Enter for more lines%s" % extra_prompt_form
-
- def get_langchain_choices(selection_docs_state1):
- langchain_modes = selection_docs_state1['langchain_modes']
-
- if is_hf:
- # don't show 'wiki' since only usually useful for internal testing at moment
- no_show_modes = ['Disabled', 'wiki']
- else:
- no_show_modes = ['Disabled']
- allowed_modes = langchain_modes.copy()
- # allowed_modes = [x for x in allowed_modes if x in dbs]
- allowed_modes += ['LLM']
- if allow_upload_to_my_data and 'MyData' not in allowed_modes:
- allowed_modes += ['MyData']
- if allow_upload_to_user_data and 'UserData' not in allowed_modes:
- allowed_modes += ['UserData']
- choices = [x for x in langchain_modes if x in allowed_modes and x not in no_show_modes]
- return choices
-
- def get_df_langchain_mode_paths(selection_docs_state1, db1s, dbs1=None):
- langchain_choices1 = get_langchain_choices(selection_docs_state1)
- langchain_mode_paths = selection_docs_state1['langchain_mode_paths']
- langchain_mode_paths = {k: v for k, v in langchain_mode_paths.items() if k in langchain_choices1}
- if langchain_mode_paths:
- langchain_mode_paths = langchain_mode_paths.copy()
- for langchain_mode1 in langchain_modes_non_db:
- langchain_mode_paths.pop(langchain_mode1, None)
- df1 = pd.DataFrame.from_dict(langchain_mode_paths.items(), orient='columns')
- df1.columns = ['Collection', 'Path']
- df1 = df1.set_index('Collection')
- else:
- df1 = pd.DataFrame(None)
- langchain_mode_types = selection_docs_state1['langchain_mode_types']
- langchain_mode_types = {k: v for k, v in langchain_mode_types.items() if k in langchain_choices1}
- if langchain_mode_types:
- langchain_mode_types = langchain_mode_types.copy()
- for langchain_mode1 in langchain_modes_non_db:
- langchain_mode_types.pop(langchain_mode1, None)
-
- df2 = pd.DataFrame.from_dict(langchain_mode_types.items(), orient='columns')
- df2.columns = ['Collection', 'Type']
- df2 = df2.set_index('Collection')
-
- from src.gpt_langchain import get_persist_directory, load_embed
- persist_directory_dict = {}
- embed_dict = {}
- chroma_version_dict = {}
- for langchain_mode3 in langchain_mode_types:
- langchain_type3 = langchain_mode_types.get(langchain_mode3, LangChainTypes.EITHER.value)
- persist_directory3, langchain_type3 = get_persist_directory(langchain_mode3,
- langchain_type=langchain_type3,
- db1s=db1s, dbs=dbs1)
- got_embedding3, use_openai_embedding3, hf_embedding_model3 = load_embed(
- persist_directory=persist_directory3)
- persist_directory_dict[langchain_mode3] = persist_directory3
- embed_dict[langchain_mode3] = 'OpenAI' if not hf_embedding_model3 else hf_embedding_model3
-
- if os.path.isfile(os.path.join(persist_directory3, 'chroma.sqlite3')):
- chroma_version_dict[langchain_mode3] = 'ChromaDB>=0.4'
- elif os.path.isdir(os.path.join(persist_directory3, 'index')):
- chroma_version_dict[langchain_mode3] = 'ChromaDB<0.4'
- elif not os.listdir(persist_directory3):
- if db_type == 'chroma':
- chroma_version_dict[langchain_mode3] = 'ChromaDB>=0.4' # will be
- elif db_type == 'chroma_old':
- chroma_version_dict[langchain_mode3] = 'ChromaDB<0.4' # will be
- else:
- chroma_version_dict[langchain_mode3] = 'Weaviate' # will be
- if isinstance(hf_embedding_model, dict):
- hf_embedding_model3 = hf_embedding_model['name']
- else:
- hf_embedding_model3 = hf_embedding_model
- assert isinstance(hf_embedding_model3, str)
- embed_dict[langchain_mode3] = hf_embedding_model3 # will be
- else:
- chroma_version_dict[langchain_mode3] = 'Weaviate'
-
- df3 = pd.DataFrame.from_dict(persist_directory_dict.items(), orient='columns')
- df3.columns = ['Collection', 'Directory']
- df3 = df3.set_index('Collection')
-
- df4 = pd.DataFrame.from_dict(embed_dict.items(), orient='columns')
- df4.columns = ['Collection', 'Embedding']
- df4 = df4.set_index('Collection')
-
- df5 = pd.DataFrame.from_dict(chroma_version_dict.items(), orient='columns')
- df5.columns = ['Collection', 'DB']
- df5 = df5.set_index('Collection')
- else:
- df2 = pd.DataFrame(None)
- df3 = pd.DataFrame(None)
- df4 = pd.DataFrame(None)
- df5 = pd.DataFrame(None)
- df_list = [df2, df1, df3, df4, df5]
- df_list = [x for x in df_list if x.shape[1] > 0]
- if len(df_list) > 1:
- df = df_list[0].join(df_list[1:]).replace(np.nan, '').reset_index()
- elif len(df_list) == 0:
- df = df_list[0].replace(np.nan, '').reset_index()
- else:
- df = pd.DataFrame(None)
- return df
-
- normal_block = gr.Row(visible=not base_wanted, equal_height=False, elem_id="col_container")
- with normal_block:
- side_bar = gr.Column(elem_id="sidebar", scale=1, min_width=100, visible=kwargs['visible_side_bar'])
- with side_bar:
- with gr.Accordion("Chats", open=False, visible=True):
- radio_chats = gr.Radio(value=None, label="Saved Chats", show_label=False,
- visible=True, interactive=True,
- type='value')
- upload_visible = kwargs['langchain_mode'] != 'Disabled' and allow_upload
- with gr.Accordion("Upload", open=False, visible=upload_visible):
- with gr.Column():
- with gr.Row(equal_height=False):
- fileup_output = gr.File(show_label=False,
- file_types=['.' + x for x in file_types],
- # file_types=['*', '*.*'], # for iPhone etc. needs to be unconstrained else doesn't work with extension-based restrictions
- file_count="multiple",
- scale=1,
- min_width=0,
- elem_id="warning", elem_classes="feedback",
- )
- fileup_output_text = gr.Textbox(visible=False)
- max_quality = gr.Checkbox(label="Maximum Ingest Quality", value=kwargs['max_quality'],
- visible=not is_public)
- url_visible = kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_url_upload
- url_label = 'URL/ArXiv' if have_arxiv else 'URL'
- url_text = gr.Textbox(label=url_label,
- # placeholder="Enter Submits",
- max_lines=1,
- interactive=True)
- text_visible = kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_text_upload
- user_text_text = gr.Textbox(label='Paste Text',
- # placeholder="Enter Submits",
- interactive=True,
- visible=text_visible)
- github_textbox = gr.Textbox(label="Github URL", visible=False) # FIXME WIP
- database_visible = kwargs['langchain_mode'] != 'Disabled'
- with gr.Accordion("Resources", open=False, visible=database_visible):
- langchain_choices0 = get_langchain_choices(selection_docs_state0)
- langchain_mode = gr.Radio(
- langchain_choices0,
- value=kwargs['langchain_mode'],
- label="Collections",
- show_label=True,
- visible=kwargs['langchain_mode'] != 'Disabled',
- min_width=100)
- add_chat_history_to_context = gr.Checkbox(label="Chat History",
- value=kwargs['add_chat_history_to_context'])
- add_search_to_context = gr.Checkbox(label="Web Search",
- value=kwargs['add_search_to_context'],
- visible=os.environ.get('SERPAPI_API_KEY') is not None \
- and have_serpapi)
- document_subset = gr.Radio([x.name for x in DocumentSubset],
- label="Subset",
- value=DocumentSubset.Relevant.name,
- interactive=True,
- )
- allowed_actions = [x for x in langchain_actions if x in visible_langchain_actions]
- langchain_action = gr.Radio(
- allowed_actions,
- value=allowed_actions[0] if len(allowed_actions) > 0 else None,
- label="Action",
- visible=True)
- allowed_agents = [x for x in langchain_agents_list if x in visible_langchain_agents]
- if os.getenv('OPENAI_API_KEY') is None and LangChainAgent.JSON.value in allowed_agents:
- allowed_agents.remove(LangChainAgent.JSON.value)
- if os.getenv('OPENAI_API_KEY') is None and LangChainAgent.PYTHON.value in allowed_agents:
- allowed_agents.remove(LangChainAgent.PYTHON.value)
- if LangChainAgent.PANDAS.value in allowed_agents:
- allowed_agents.remove(LangChainAgent.PANDAS.value)
- langchain_agents = gr.Dropdown(
- allowed_agents,
- value=None,
- label="Agents",
- multiselect=True,
- interactive=True,
- visible=True,
- elem_id="langchain_agents",
- filterable=False)
- visible_doc_track = upload_visible and kwargs['visible_doc_track'] and not kwargs['large_file_count_mode']
- row_doc_track = gr.Row(visible=visible_doc_track)
- with row_doc_track:
- if kwargs['langchain_mode'] in langchain_modes_non_db:
- doc_counts_str = "Pure LLM Mode"
- else:
- doc_counts_str = "Name: %s\nDocs: Unset\nChunks: Unset" % kwargs['langchain_mode']
- text_doc_count = gr.Textbox(lines=3, label="Doc Counts", value=doc_counts_str,
- visible=visible_doc_track)
- text_file_last = gr.Textbox(lines=1, label="Newest Doc", value=None, visible=visible_doc_track)
- text_viewable_doc_count = gr.Textbox(lines=2, label=None, visible=False)
- col_tabs = gr.Column(elem_id="col-tabs", scale=10)
- with col_tabs, gr.Tabs():
- if kwargs['chat_tables']:
- chat_tab = gr.Row(visible=True)
- else:
- chat_tab = gr.TabItem("Chat") \
- if kwargs['visible_chat_tab'] else gr.Row(visible=False)
- with chat_tab:
- if kwargs['langchain_mode'] == 'Disabled':
- text_output_nochat = gr.Textbox(lines=5, label=output_label0, show_copy_button=True,
- visible=not kwargs['chat'])
- else:
- # text looks a bit worse, but HTML links work
- text_output_nochat = gr.HTML(label=output_label0, visible=not kwargs['chat'])
- with gr.Row():
- # NOCHAT
- instruction_nochat = gr.Textbox(
- lines=kwargs['input_lines'],
- label=instruction_label_nochat,
- placeholder=kwargs['placeholder_instruction'],
- visible=not kwargs['chat'],
- )
- iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction",
- placeholder=kwargs['placeholder_input'],
- value=kwargs['iinput'],
- visible=not kwargs['chat'])
- submit_nochat = gr.Button("Submit", size='sm', visible=not kwargs['chat'])
- flag_btn_nochat = gr.Button("Flag", size='sm', visible=not kwargs['chat'])
- score_text_nochat = gr.Textbox("Response Score: NA", show_label=False,
- visible=not kwargs['chat'])
- submit_nochat_api = gr.Button("Submit nochat API", visible=False)
- submit_nochat_api_plain = gr.Button("Submit nochat API Plain", visible=False)
- inputs_dict_str = gr.Textbox(label='API input for nochat', show_label=False, visible=False)
- text_output_nochat_api = gr.Textbox(lines=5, label='API nochat output', visible=False,
- show_copy_button=True)
-
- # CHAT
- col_chat = gr.Column(visible=kwargs['chat'])
- with col_chat:
- with gr.Row():
- with gr.Column(scale=50):
- with gr.Row(elem_id="prompt-form-row"):
- label_instruction = 'Ask anything'
- instruction = gr.Textbox(
- lines=kwargs['input_lines'],
- label=label_instruction,
- placeholder=instruction_label,
- info=None,
- elem_id='prompt-form',
- container=True,
- )
- attach_button = gr.UploadButton(
- elem_id="attach-button",
- value="",
- label="Upload File(s)",
- size="sm",
- min_width=24,
- file_types=['.' + x for x in file_types],
- file_count="multiple")
-
- submit_buttons = gr.Row(equal_height=False, visible=kwargs['visible_submit_buttons'])
- with submit_buttons:
- mw1 = 50
- mw2 = 50
- with gr.Column(min_width=mw1):
- submit = gr.Button(value='Submit', variant='primary', size='sm',
- min_width=mw1)
- stop_btn = gr.Button(value="Stop", variant='secondary', size='sm',
- min_width=mw1)
- save_chat_btn = gr.Button("Save", size='sm', min_width=mw1)
- with gr.Column(min_width=mw2):
- retry_btn = gr.Button("Redo", size='sm', min_width=mw2)
- undo = gr.Button("Undo", size='sm', min_width=mw2)
- clear_chat_btn = gr.Button(value="Clear", size='sm', min_width=mw2)
-
- visible_model_choice = bool(kwargs['model_lock']) and \
- len(model_states) > 1 and \
- kwargs['visible_visible_models']
- with gr.Row(visible=visible_model_choice):
- visible_models = gr.Dropdown(kwargs['all_models'],
- label="Visible Models",
- value=visible_models_state0,
- interactive=True,
- multiselect=True,
- visible=visible_model_choice,
- elem_id="visible-models",
- filterable=False,
- )
-
- text_output, text_output2, text_outputs = make_chatbots(output_label0, output_label0_model2,
- **kwargs)
-
- with gr.Row():
- with gr.Column(visible=kwargs['score_model']):
- score_text = gr.Textbox(res_value,
- show_label=False,
- visible=True)
- score_text2 = gr.Textbox("Response Score2: NA", show_label=False,
- visible=False and not kwargs['model_lock'])
-
- doc_selection_tab = gr.TabItem("Document Selection") \
- if kwargs['visible_doc_selection_tab'] else gr.Row(visible=False)
- with doc_selection_tab:
- if kwargs['langchain_mode'] in langchain_modes_non_db:
- dlabel1 = 'Choose Resources->Collections and Pick Collection'
- active_collection = gr.Markdown(value="#### Not Chatting with Any Collection\n%s" % dlabel1)
- else:
- dlabel1 = 'Select Subset of Document(s) for Chat with Collection: %s' % kwargs['langchain_mode']
- active_collection = gr.Markdown(
- value="#### Chatting with Collection: %s" % kwargs['langchain_mode'])
- document_choice = gr.Dropdown(docs_state0,
- label=dlabel1,
- value=[DocumentChoice.ALL.value],
- interactive=True,
- multiselect=True,
- visible=kwargs['langchain_mode'] != 'Disabled',
- )
- sources_visible = kwargs['langchain_mode'] != 'Disabled' and enable_sources_list
- with gr.Row():
- with gr.Column(scale=1):
- get_sources_btn = gr.Button(value="Update UI with Document(s) from DB", scale=0, size='sm',
- visible=sources_visible and kwargs['large_file_count_mode'])
- # handle API get sources
- get_sources_api_btn = gr.Button(visible=False)
- get_sources_api_text = gr.Textbox(visible=False)
-
- get_document_api_btn = gr.Button(visible=False)
- get_document_api_text = gr.Textbox(visible=False)
-
- show_sources_btn = gr.Button(value="Show Sources from DB", scale=0, size='sm',
- visible=sources_visible and kwargs['large_file_count_mode'])
- delete_sources_btn = gr.Button(value="Delete Selected Sources from DB", scale=0, size='sm',
- visible=sources_visible)
- refresh_sources_btn = gr.Button(value="Update DB with new/changed files on disk", scale=0,
- size='sm',
- visible=sources_visible and allow_upload_to_user_data)
- with gr.Column(scale=4):
- pass
- with gr.Row():
- with gr.Column(scale=1):
- visible_add_remove_collection = (allow_upload_to_user_data or
- allow_upload_to_my_data) and \
- kwargs['langchain_mode'] != 'Disabled'
- add_placeholder = "e.g. UserData2, shared, user_path2" \
- if not is_public else "e.g. MyData2, personal (optional)"
- remove_placeholder = "e.g. UserData2" if not is_public else "e.g. MyData2"
- new_langchain_mode_text = gr.Textbox(value="", visible=visible_add_remove_collection,
- label='Add Collection',
- placeholder=add_placeholder,
- interactive=True)
- remove_langchain_mode_text = gr.Textbox(value="", visible=visible_add_remove_collection,
- label='Remove Collection from UI',
- placeholder=remove_placeholder,
- interactive=True)
- purge_langchain_mode_text = gr.Textbox(value="", visible=visible_add_remove_collection,
- label='Purge Collection (UI, DB, & source files)',
- placeholder=remove_placeholder,
- interactive=True)
- sync_sources_btn = gr.Button(
- value="Synchronize DB and UI [only required if did not login and have shared docs]",
- scale=0, size='sm',
- visible=sources_visible and allow_upload_to_user_data and not kwargs[
- 'large_file_count_mode'])
- load_langchain = gr.Button(
- value="Load Collections State [only required if logged in another user ", scale=0,
- size='sm',
- visible=False and allow_upload_to_user_data and
- kwargs['langchain_mode'] != 'Disabled')
- with gr.Column(scale=5):
- if kwargs['langchain_mode'] != 'Disabled' and visible_add_remove_collection:
- df0 = get_df_langchain_mode_paths(selection_docs_state0, None, dbs1=dbs)
- else:
- df0 = pd.DataFrame(None)
- langchain_mode_path_text = gr.Dataframe(value=df0,
- visible=visible_add_remove_collection,
- label='LangChain Mode-Path',
- show_label=False,
- interactive=False)
-
- sources_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list,
- equal_height=False)
- with sources_row:
- with gr.Column(scale=1):
- file_source = gr.File(interactive=False,
- label="Download File w/Sources")
- with gr.Column(scale=2):
- sources_text = gr.HTML(label='Sources Added', interactive=False)
-
- doc_exception_text = gr.Textbox(value="", label='Document Exceptions',
- interactive=False,
- visible=kwargs['langchain_mode'] != 'Disabled')
- file_types_str = ' '.join(file_types) + ' URL ArXiv TEXT'
- gr.Textbox(value=file_types_str, label='Document Types Supported',
- lines=2,
- interactive=False,
- visible=kwargs['langchain_mode'] != 'Disabled')
-
- doc_view_tab = gr.TabItem("Document Viewer") \
- if kwargs['visible_doc_view_tab'] else gr.Row(visible=False)
- with doc_view_tab:
- with gr.Row(visible=kwargs['langchain_mode'] != 'Disabled'):
- with gr.Column(scale=2):
- get_viewable_sources_btn = gr.Button(value="Update UI with Document(s) from DB", scale=0,
- size='sm',
- visible=sources_visible and kwargs[
- 'large_file_count_mode'])
- view_document_choice = gr.Dropdown(viewable_docs_state0,
- label="Select Single Document to View",
- value=None,
- interactive=True,
- multiselect=False,
- visible=True,
- )
- info_view_raw = "Raw text shown if render of original doc fails"
- if is_public:
- info_view_raw += " (Up to %s chunks in public portal)" % kwargs['max_raw_chunks']
- view_raw_text_checkbox = gr.Checkbox(label="View Database Text", value=False,
- info=info_view_raw,
- visible=kwargs['db_type'] in ['chroma', 'chroma_old'])
- with gr.Column(scale=4):
- pass
- doc_view = gr.HTML(visible=False)
- doc_view2 = gr.Dataframe(visible=False)
- doc_view3 = gr.JSON(visible=False)
- doc_view4 = gr.Markdown(visible=False)
- doc_view5 = gr.HTML(visible=False)
-
- chat_tab = gr.TabItem("Chat History") \
- if kwargs['visible_chat_history_tab'] else gr.Row(visible=False)
- with chat_tab:
- with gr.Row():
- with gr.Column(scale=1):
- remove_chat_btn = gr.Button(value="Remove Selected Saved Chats", visible=True, size='sm')
- flag_btn = gr.Button("Flag Current Chat", size='sm')
- export_chats_btn = gr.Button(value="Export Chats to Download", size='sm')
- with gr.Column(scale=4):
- pass
- with gr.Row():
- chats_file = gr.File(interactive=False, label="Download Exported Chats")
- chatsup_output = gr.File(label="Upload Chat File(s)",
- file_types=['.json'],
- file_count='multiple',
- elem_id="warning", elem_classes="feedback")
- with gr.Row():
- if 'mbart-' in kwargs['model_lower']:
- src_lang = gr.Dropdown(list(languages_covered().keys()),
- value=kwargs['src_lang'],
- label="Input Language")
- tgt_lang = gr.Dropdown(list(languages_covered().keys()),
- value=kwargs['tgt_lang'],
- label="Output Language")
-
- chat_exception_text = gr.Textbox(value="", visible=True, label='Chat Exceptions',
- interactive=False)
- expert_tab = gr.TabItem("Expert") \
- if kwargs['visible_expert_tab'] else gr.Row(visible=False)
- with expert_tab:
- with gr.Row():
- with gr.Column():
- prompt_type = gr.Dropdown(prompt_types_strings,
- value=kwargs['prompt_type'], label="Prompt Type",
- visible=not kwargs['model_lock'],
- interactive=not is_public,
- )
- prompt_type2 = gr.Dropdown(prompt_types_strings,
- value=kwargs['prompt_type'], label="Prompt Type Model 2",
- visible=False and not kwargs['model_lock'],
- interactive=not is_public)
- system_prompt = gr.Textbox(label="System Prompt",
- info="If 'auto', then uses model's system prompt,"
- " else use this message."
- " If empty, no system message is used",
- value=kwargs['system_prompt'])
- context = gr.Textbox(lines=2, label="System Pre-Context",
- info="Directly pre-appended without prompt processing (before Pre-Conversation)",
- value=kwargs['context'])
- chat_conversation = gr.Textbox(lines=2, label="Pre-Conversation",
- info="Pre-append conversation for instruct/chat models as List of tuple of (human, bot)",
- value=kwargs['chat_conversation'])
- text_context_list = gr.Textbox(lines=2, label="Text Doc Q/A",
- info="List of strings, for document Q/A, for bypassing database (i.e. also works in LLM Mode)",
- value=kwargs['chat_conversation'],
- visible=not is_public, # primarily meant for API
- )
- iinput = gr.Textbox(lines=2, label="Input for Instruct prompt types",
- info="If given for document query, added after query",
- value=kwargs['iinput'],
- placeholder=kwargs['placeholder_input'],
- interactive=not is_public)
- with gr.Column():
- pre_prompt_query = gr.Textbox(label="Query Pre-Prompt",
- info="Added before documents",
- value=kwargs['pre_prompt_query'] or '')
- prompt_query = gr.Textbox(label="Query Prompt",
- info="Added after documents",
- value=kwargs['prompt_query'] or '')
- pre_prompt_summary = gr.Textbox(label="Summary Pre-Prompt",
- info="Added before documents",
- value=kwargs['pre_prompt_summary'] or '')
- prompt_summary = gr.Textbox(label="Summary Prompt",
- info="Added after documents (if query given, 'Focusing on {query}, ' is pre-appended)",
- value=kwargs['prompt_summary'] or '')
- with gr.Row(visible=not is_public):
- image_loaders = gr.CheckboxGroup(image_loaders_options,
- label="Force Image Reader",
- value=image_loaders_options0)
- pdf_loaders = gr.CheckboxGroup(pdf_loaders_options,
- label="Force PDF Reader",
- value=pdf_loaders_options0)
- url_loaders = gr.CheckboxGroup(url_loaders_options,
- label="Force URL Reader", value=url_loaders_options0)
- jq_schema = gr.Textbox(label="JSON jq_schema", value=jq_schema0)
-
- min_top_k_docs, max_top_k_docs, label_top_k_docs = get_minmax_top_k_docs(is_public)
- top_k_docs = gr.Slider(minimum=min_top_k_docs, maximum=max_top_k_docs, step=1,
- value=kwargs['top_k_docs'],
- label=label_top_k_docs,
- # info="For LangChain",
- visible=kwargs['langchain_mode'] != 'Disabled',
- interactive=not is_public)
- chunk_size = gr.Number(value=kwargs['chunk_size'],
- label="Chunk size for document chunking",
- info="For LangChain (ignored if chunk=False)",
- minimum=128,
- maximum=2048,
- visible=kwargs['langchain_mode'] != 'Disabled',
- interactive=not is_public,
- precision=0)
- docs_ordering_type = gr.Radio(
- docs_ordering_types,
- value=kwargs['docs_ordering_type'],
- label="Document Sorting in LLM Context",
- visible=True)
- chunk = gr.components.Checkbox(value=kwargs['chunk'],
- label="Whether to chunk documents",
- info="For LangChain",
- visible=kwargs['langchain_mode'] != 'Disabled',
- interactive=not is_public)
- embed = gr.components.Checkbox(value=True,
- label="Whether to embed text",
- info="For LangChain",
- visible=False)
- with gr.Row():
- stream_output = gr.components.Checkbox(label="Stream output",
- value=kwargs['stream_output'])
- do_sample = gr.Checkbox(label="Sample",
- info="Enable sampler (required for use of temperature, top_p, top_k)",
- value=kwargs['do_sample'])
- max_time = gr.Slider(minimum=0, maximum=kwargs['max_max_time'], step=1,
- value=min(kwargs['max_max_time'],
- kwargs['max_time']), label="Max. time",
- info="Max. time to search optimal output.")
- temperature = gr.Slider(minimum=0.01, maximum=2,
- value=kwargs['temperature'],
- label="Temperature",
- info="Lower is deterministic, higher more creative")
- top_p = gr.Slider(minimum=1e-3, maximum=1.0 - 1e-3,
- value=kwargs['top_p'], label="Top p",
- info="Cumulative probability of tokens to sample from")
- top_k = gr.Slider(
- minimum=1, maximum=100, step=1,
- value=kwargs['top_k'], label="Top k",
- info='Num. tokens to sample from'
- )
- # FIXME: https://github.com/h2oai/h2ogpt/issues/106
- if os.getenv('TESTINGFAIL'):
- max_beams = 8 if not (memory_restriction_level or is_public) else 1
- else:
- max_beams = 1
- num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1,
- value=min(max_beams, kwargs['num_beams']), label="Beams",
- info="Number of searches for optimal overall probability. "
- "Uses more GPU memory/compute",
- interactive=False, visible=max_beams > 1)
- max_max_new_tokens = get_max_max_new_tokens(model_state0, **kwargs)
- max_new_tokens = gr.Slider(
- minimum=1, maximum=max_max_new_tokens, step=1,
- value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length",
- )
- min_new_tokens = gr.Slider(
- minimum=0, maximum=max_max_new_tokens, step=1,
- value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length",
- )
- max_new_tokens2 = gr.Slider(
- minimum=1, maximum=max_max_new_tokens, step=1,
- value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length 2",
- visible=False and not kwargs['model_lock'],
- )
- min_new_tokens2 = gr.Slider(
- minimum=0, maximum=max_max_new_tokens, step=1,
- value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length 2",
- visible=False and not kwargs['model_lock'],
- )
- min_max_new_tokens = gr.Slider(
- minimum=1, maximum=max_max_new_tokens, step=1,
- value=min(max_max_new_tokens, kwargs['min_max_new_tokens']), label="Min. of Max output length",
- )
- early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search",
- value=kwargs['early_stopping'], visible=max_beams > 1)
- repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0,
- value=kwargs['repetition_penalty'],
- label="Repetition Penalty")
- num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1,
- value=kwargs['num_return_sequences'],
- label="Number Returns", info="Must be <= num_beams",
- interactive=not is_public, visible=max_beams > 1)
- chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'],
- visible=False, # no longer support nochat in UI
- interactive=not is_public,
- )
- with gr.Row():
- count_chat_tokens_btn = gr.Button(value="Count Chat Tokens",
- visible=not is_public and not kwargs['model_lock'],
- interactive=not is_public, size='sm')
- chat_token_count = gr.Textbox(label="Chat Token Count Result", value=None,
- visible=not is_public and not kwargs['model_lock'],
- interactive=False)
-
- models_tab = gr.TabItem("Models") \
- if kwargs['visible_models_tab'] and not bool(kwargs['model_lock']) else gr.Row(visible=False)
- with models_tab:
- load_msg = "Download/Load Model" if not is_public \
- else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO"
- if kwargs['base_model'] not in ['', None, no_model_str]:
- load_msg += ' [WARNING: Avoid --base_model on CLI for memory efficient Load-Unload]'
- load_msg2 = load_msg + "(Model 2)"
- variant_load_msg = 'primary' if not is_public else 'secondary'
- with gr.Row():
- n_gpus_list = [str(x) for x in list(range(-1, n_gpus))]
- with gr.Column():
- with gr.Row():
- with gr.Column(scale=20, visible=not kwargs['model_lock']):
- load_model_button = gr.Button(load_msg, variant=variant_load_msg, scale=0,
- size='sm', interactive=not is_public)
- model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Base Model",
- value=kwargs['base_model'])
- lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA",
- value=kwargs['lora_weights'], visible=kwargs['show_lora'])
- server_choice = gr.Dropdown(server_options_state.value[0], label="Choose Server",
- value=kwargs['inference_server'], visible=not is_public)
- max_seq_len = gr.Number(value=kwargs['max_seq_len'] or 2048,
- minimum=128,
- maximum=2 ** 18,
- info="If standard LLaMa-2, choose up to 4096",
- label="max_seq_len")
- rope_scaling = gr.Textbox(value=str(kwargs['rope_scaling'] or {}),
- label="rope_scaling")
- row_llama = gr.Row(visible=kwargs['show_llama'] and kwargs['base_model'] == 'llama')
- with row_llama:
- model_path_llama = gr.Textbox(value=kwargs['llamacpp_dict']['model_path_llama'],
- lines=4,
- label="Choose LLaMa.cpp Model Path/URL (for Base Model: llama)",
- visible=kwargs['show_llama'])
- n_gpu_layers = gr.Number(value=kwargs['llamacpp_dict']['n_gpu_layers'],
- minimum=0, maximum=100,
- label="LLaMa.cpp Num. GPU Layers Offloaded",
- visible=kwargs['show_llama'])
- n_batch = gr.Number(value=kwargs['llamacpp_dict']['n_batch'],
- minimum=0, maximum=2048,
- label="LLaMa.cpp Batch Size",
- visible=kwargs['show_llama'])
- n_gqa = gr.Number(value=kwargs['llamacpp_dict']['n_gqa'],
- minimum=0, maximum=32,
- label="LLaMa.cpp Num. Group Query Attention (8 for 70B LLaMa2)",
- visible=kwargs['show_llama'])
- llamacpp_dict_more = gr.Textbox(value="{}",
- lines=4,
- label="Dict for other LLaMa.cpp/GPT4All options",
- visible=kwargs['show_llama'])
- row_gpt4all = gr.Row(
- visible=kwargs['show_gpt4all'] and kwargs['base_model'] in ['gptj',
- 'gpt4all_llama'])
- with row_gpt4all:
- model_name_gptj = gr.Textbox(value=kwargs['llamacpp_dict']['model_name_gptj'],
- label="Choose GPT4All GPTJ Model Path/URL (for Base Model: gptj)",
- visible=kwargs['show_gpt4all'])
- model_name_gpt4all_llama = gr.Textbox(
- value=kwargs['llamacpp_dict']['model_name_gpt4all_llama'],
- label="Choose GPT4All LLaMa Model Path/URL (for Base Model: gpt4all_llama)",
- visible=kwargs['show_gpt4all'])
- with gr.Column(scale=1, visible=not kwargs['model_lock']):
- model_load8bit_checkbox = gr.components.Checkbox(
- label="Load 8-bit [requires support]",
- value=kwargs['load_8bit'], interactive=not is_public)
- model_load4bit_checkbox = gr.components.Checkbox(
- label="Load 4-bit [requires support]",
- value=kwargs['load_4bit'], interactive=not is_public)
- model_low_bit_mode = gr.Slider(value=kwargs['low_bit_mode'],
- minimum=0, maximum=4, step=1,
- label="low_bit_mode")
- model_load_gptq = gr.Textbox(label="gptq", value=kwargs['load_gptq'],
- interactive=not is_public)
- model_load_exllama_checkbox = gr.components.Checkbox(
- label="Load load_exllama [requires support]",
- value=kwargs['load_exllama'], interactive=not is_public)
- model_safetensors_checkbox = gr.components.Checkbox(
- label="Safetensors [requires support]",
- value=kwargs['use_safetensors'], interactive=not is_public)
- model_revision = gr.Textbox(label="revision", value=kwargs['revision'],
- interactive=not is_public)
- model_use_gpu_id_checkbox = gr.components.Checkbox(
- label="Choose Devices [If not Checked, use all GPUs]",
- value=kwargs['use_gpu_id'], interactive=not is_public,
- visible=n_gpus != 0)
- model_gpu = gr.Dropdown(n_gpus_list,
- label="GPU ID [-1 = all GPUs, if Choose is enabled]",
- value=kwargs['gpu_id'], interactive=not is_public,
- visible=n_gpus != 0)
- model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'],
- interactive=False)
- lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'],
- visible=kwargs['show_lora'], interactive=False)
- server_used = gr.Textbox(label="Current Server",
- value=kwargs['inference_server'],
- visible=bool(kwargs['inference_server']) and not is_public,
- interactive=False)
- prompt_dict = gr.Textbox(label="Prompt (or Custom)",
- value=pprint.pformat(kwargs['prompt_dict'], indent=4),
- interactive=not is_public, lines=4)
- col_model2 = gr.Column(visible=False)
- with col_model2:
- with gr.Row():
- with gr.Column(scale=20, visible=not kwargs['model_lock']):
- load_model_button2 = gr.Button(load_msg2, variant=variant_load_msg, scale=0,
- size='sm', interactive=not is_public)
- model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2",
- value=no_model_str)
- lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2",
- value=no_lora_str,
- visible=kwargs['show_lora'])
- server_choice2 = gr.Dropdown(server_options_state.value[0], label="Choose Server 2",
- value=no_server_str,
- visible=not is_public)
- max_seq_len2 = gr.Number(value=kwargs['max_seq_len'] or 2048,
- minimum=128,
- maximum=2 ** 18,
- info="If standard LLaMa-2, choose up to 4096",
- label="max_seq_len Model 2")
- rope_scaling2 = gr.Textbox(value=str(kwargs['rope_scaling'] or {}),
- label="rope_scaling Model 2")
-
- row_llama2 = gr.Row(
- visible=kwargs['show_llama'] and kwargs['base_model'] == 'llama')
- with row_llama2:
- model_path_llama2 = gr.Textbox(
- value=kwargs['llamacpp_dict']['model_path_llama'],
- label="Choose LLaMa.cpp Model 2 Path/URL (for Base Model: llama)",
- lines=4,
- visible=kwargs['show_llama'])
- n_gpu_layers2 = gr.Number(value=kwargs['llamacpp_dict']['n_gpu_layers'],
- minimum=0, maximum=100,
- label="LLaMa.cpp Num. GPU 2 Layers Offloaded",
- visible=kwargs['show_llama'])
- n_batch2 = gr.Number(value=kwargs['llamacpp_dict']['n_batch'],
- minimum=0, maximum=2048,
- label="LLaMa.cpp Model 2 Batch Size",
- visible=kwargs['show_llama'])
- n_gqa2 = gr.Number(value=kwargs['llamacpp_dict']['n_gqa'],
- minimum=0, maximum=32,
- label="LLaMa.cpp Model 2 Num. Group Query Attention (8 for 70B LLaMa2)",
- visible=kwargs['show_llama'])
- llamacpp_dict_more2 = gr.Textbox(value="{}",
- lines=4,
- label="Model 2 Dict for other LLaMa.cpp/GPT4All options",
- visible=kwargs['show_llama'])
- row_gpt4all2 = gr.Row(
- visible=kwargs['show_gpt4all'] and kwargs['base_model'] in ['gptj',
- 'gpt4all_llama'])
- with row_gpt4all2:
- model_name_gptj2 = gr.Textbox(value=kwargs['llamacpp_dict']['model_name_gptj'],
- label="Choose GPT4All GPTJ Model 2 Path/URL (for Base Model: gptj)",
- visible=kwargs['show_gpt4all'])
- model_name_gpt4all_llama2 = gr.Textbox(
- value=kwargs['llamacpp_dict']['model_name_gpt4all_llama'],
- label="Choose GPT4All LLaMa Model 2 Path/URL (for Base Model: gpt4all_llama)",
- visible=kwargs['show_gpt4all'])
-
- with gr.Column(scale=1, visible=not kwargs['model_lock']):
- model_load8bit_checkbox2 = gr.components.Checkbox(
- label="Load 8-bit (Model 2) [requires support]",
- value=kwargs['load_8bit'], interactive=not is_public)
- model_load4bit_checkbox2 = gr.components.Checkbox(
- label="Load 4-bit (Model 2) [requires support]",
- value=kwargs['load_4bit'], interactive=not is_public)
- model_low_bit_mode2 = gr.Slider(value=kwargs['low_bit_mode'],
- # ok that same as Model 1
- minimum=0, maximum=4, step=1,
- label="low_bit_mode (Model 2)")
- model_load_gptq2 = gr.Textbox(label="gptq (Model 2)", value='',
- interactive=not is_public)
- model_load_exllama_checkbox2 = gr.components.Checkbox(
- label="Load load_exllama (Model 2) [requires support]",
- value=False, interactive=not is_public)
- model_safetensors_checkbox2 = gr.components.Checkbox(
- label="Safetensors (Model 2) [requires support]",
- value=False, interactive=not is_public)
- model_revision2 = gr.Textbox(label="revision (Model 2)", value='',
- interactive=not is_public)
- model_use_gpu_id_checkbox2 = gr.components.Checkbox(
- label="Choose Devices (Model 2) [If not Checked, use all GPUs]",
- value=kwargs[
- 'use_gpu_id'], interactive=not is_public)
- model_gpu2 = gr.Dropdown(n_gpus_list,
- label="GPU ID (Model 2) [-1 = all GPUs, if choose is enabled]",
- value=kwargs['gpu_id'], interactive=not is_public)
- # no model/lora loaded ever in model2 by default
- model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str,
- interactive=False)
- lora_used2 = gr.Textbox(label="Current LORA (Model 2)", value=no_lora_str,
- visible=kwargs['show_lora'], interactive=False)
- server_used2 = gr.Textbox(label="Current Server (Model 2)", value=no_server_str,
- interactive=False,
- visible=not is_public)
- prompt_dict2 = gr.Textbox(label="Prompt (or Custom) (Model 2)",
- value=pprint.pformat(kwargs['prompt_dict'], indent=4),
- interactive=not is_public, lines=4)
- compare_checkbox = gr.components.Checkbox(label="Compare Two Models",
- value=kwargs['model_lock'],
- visible=not is_public and not kwargs['model_lock'])
- with gr.Row(visible=not kwargs['model_lock']):
- with gr.Column(scale=50):
- new_model = gr.Textbox(label="New Model name/path/URL", interactive=not is_public)
- with gr.Column(scale=50):
- new_lora = gr.Textbox(label="New LORA name/path/URL", visible=kwargs['show_lora'],
- interactive=not is_public)
- with gr.Column(scale=50):
- new_server = gr.Textbox(label="New Server url:port", interactive=not is_public)
- with gr.Row():
- add_model_lora_server_button = gr.Button("Add new Model, Lora, Server url:port", scale=0,
- variant=variant_load_msg,
- size='sm', interactive=not is_public)
- system_tab = gr.TabItem("System") \
- if kwargs['visible_system_tab'] else gr.Row(visible=False)
- with system_tab:
- with gr.Row():
- with gr.Column(scale=1):
- side_bar_text = gr.Textbox('on' if kwargs['visible_side_bar'] else 'off',
- visible=False, interactive=False)
- doc_count_text = gr.Textbox('on' if kwargs['visible_doc_track'] else 'off',
- visible=False, interactive=False)
- submit_buttons_text = gr.Textbox('on' if kwargs['visible_submit_buttons'] else 'off',
- visible=False, interactive=False)
- visible_models_text = gr.Textbox('on' if kwargs['visible_visible_models'] else 'off',
- visible=False, interactive=False)
-
- side_bar_btn = gr.Button("Toggle SideBar", variant="secondary", size="sm")
- doc_count_btn = gr.Button("Toggle SideBar Document Count/Show Newest", variant="secondary",
- size="sm")
- submit_buttons_btn = gr.Button("Toggle Submit Buttons", variant="secondary", size="sm")
- visible_model_btn = gr.Button("Toggle Visible Models", variant="secondary", size="sm")
- col_tabs_scale = gr.Slider(minimum=1, maximum=20, value=10, step=1, label='Window Size')
- text_outputs_height = gr.Slider(minimum=100, maximum=2000, value=kwargs['height'] or 400,
- step=50, label='Chat Height')
- dark_mode_btn = gr.Button("Dark Mode", variant="secondary", size="sm")
- with gr.Column(scale=4):
- pass
- system_visible0 = not is_public and not admin_pass
- admin_row = gr.Row()
- with admin_row:
- with gr.Column(scale=1):
- admin_pass_textbox = gr.Textbox(label="Admin Password",
- type='password',
- visible=not system_visible0)
- with gr.Column(scale=4):
- pass
- system_row = gr.Row(visible=system_visible0)
- with system_row:
- with gr.Column():
- with gr.Row():
- system_btn = gr.Button(value='Get System Info', size='sm')
- system_text = gr.Textbox(label='System Info', interactive=False, show_copy_button=True)
- with gr.Row():
- system_input = gr.Textbox(label='System Info Dict Password', interactive=True,
- visible=not is_public)
- system_btn2 = gr.Button(value='Get System Info Dict', visible=not is_public, size='sm')
- system_text2 = gr.Textbox(label='System Info Dict', interactive=False,
- visible=not is_public, show_copy_button=True)
- with gr.Row():
- system_btn3 = gr.Button(value='Get Hash', visible=not is_public, size='sm')
- system_text3 = gr.Textbox(label='Hash', interactive=False,
- visible=not is_public, show_copy_button=True)
- system_btn4 = gr.Button(value='Get Model Names', visible=not is_public, size='sm')
- system_text4 = gr.Textbox(label='Model Names', interactive=False,
- visible=not is_public, show_copy_button=True)
-
- with gr.Row():
- zip_btn = gr.Button("Zip", size='sm')
- zip_text = gr.Textbox(label="Zip file name", interactive=False)
- file_output = gr.File(interactive=False, label="Zip file to Download")
- with gr.Row():
- s3up_btn = gr.Button("S3UP", size='sm')
- s3up_text = gr.Textbox(label='S3UP result', interactive=False)
-
- tos_tab = gr.TabItem("Terms of Service") \
- if kwargs['visible_tos_tab'] else gr.Row(visible=False)
- with tos_tab:
- description = ""
- description += """
DISCLAIMERS:
etc. added in chat, try to remove some of that to help avoid dup entries when hit new conversation - is_same = True - # length of conversation has to be same - if len(x) != len(y): - return False - if len(x) != len(y): - return False - for stepx, stepy in zip(x, y): - if len(stepx) != len(stepy): - # something off with a conversation - return False - for stepxx, stepyy in zip(stepx, stepy): - if len(stepxx) != len(stepyy): - # something off with a conversation - return False - if len(stepxx) != 2: - # something off - return False - if len(stepyy) != 2: - # something off - return False - questionx = stepxx[0].replace('
', '').replace('
', '') if stepxx[0] is not None else None - answerx = stepxx[1].replace('', '').replace('
', '') if stepxx[1] is not None else None - - questiony = stepyy[0].replace('', '').replace('
', '') if stepyy[0] is not None else None - answery = stepyy[1].replace('', '').replace('
', '') if stepyy[1] is not None else None - - if questionx != questiony or answerx != answery: - return False - return is_same - - def save_chat(*args, chat_is_list=False, auth_filename=None, auth_freeze=None): - args_list = list(args) - db1s = args_list[0] - requests_state1 = args_list[1] - args_list = args_list[2:] - if not chat_is_list: - # list of chatbot histories, - # can't pass in list with list of chatbot histories and state due to gradio limits - chat_list = args_list[:-1] - else: - assert len(args_list) == 2 - chat_list = args_list[0] - # if old chat file with single chatbot, get into shape - if isinstance(chat_list, list) and len(chat_list) > 0 and isinstance(chat_list[0], list) and len( - chat_list[0]) == 2 and isinstance(chat_list[0][0], str) and isinstance(chat_list[0][1], str): - chat_list = [chat_list] - # remove None histories - chat_list_not_none = [x for x in chat_list if x and len(x) > 0 and len(x[0]) == 2 and x[0][1] is not None] - chat_list_none = [x for x in chat_list if x not in chat_list_not_none] - if len(chat_list_none) > 0 and len(chat_list_not_none) == 0: - raise ValueError("Invalid chat file") - # dict with keys of short chat names, values of list of list of chatbot histories - chat_state1 = args_list[-1] - short_chats = list(chat_state1.keys()) - if len(chat_list_not_none) > 0: - # make short_chat key from only first history, based upon question that is same anyways - chat_first = chat_list_not_none[0] - short_chat = get_short_chat(chat_first, short_chats) - if short_chat: - old_chat_lists = list(chat_state1.values()) - already_exists = any([is_chat_same(chat_list, x) for x in old_chat_lists]) - if not already_exists: - chat_state1[short_chat] = chat_list.copy() - - # reverse so newest at top - choices = list(chat_state1.keys()).copy() - choices.reverse() - - # save saved chats and chatbots to auth file - text_output1 = chat_list[0] - text_output21 = chat_list[1] - text_outputs1 = chat_list[2:] - save_auth(requests_state1, auth_filename, auth_freeze, chat_state1=chat_state1, - text_output1=text_output1, text_output21=text_output21, text_outputs1=text_outputs1) - - return chat_state1, gr.update(choices=choices, value=None) - - def switch_chat(chat_key, chat_state1, num_model_lock=0): - chosen_chat = chat_state1[chat_key] - # deal with possible different size of chat list vs. current list - ret_chat = [None] * (2 + num_model_lock) - for chati in range(0, 2 + num_model_lock): - ret_chat[chati % len(ret_chat)] = chosen_chat[chati % len(chosen_chat)] - return tuple(ret_chat) - - def clear_texts(*args): - return tuple([gr.Textbox.update(value='')] * len(args)) - - def clear_scores(): - return gr.Textbox.update(value=res_value), \ - gr.Textbox.update(value='Response Score: NA'), \ - gr.Textbox.update(value='Response Score: NA') - - switch_chat_fun = functools.partial(switch_chat, num_model_lock=len(text_outputs)) - radio_chats.input(switch_chat_fun, - inputs=[radio_chats, chat_state], - outputs=[text_output, text_output2] + text_outputs) \ - .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) - - def remove_chat(chat_key, chat_state1): - if isinstance(chat_key, str): - chat_state1.pop(chat_key, None) - return gr.update(choices=list(chat_state1.keys()), value=None), chat_state1 - - remove_chat_event = remove_chat_btn.click(remove_chat, - inputs=[radio_chats, chat_state], - outputs=[radio_chats, chat_state], - queue=False, api_name='remove_chat') - - def get_chats1(chat_state1): - base = 'chats' - base = makedirs(base, exist_ok=True, tmp_ok=True, use_base=True) - filename = os.path.join(base, 'chats_%s.json' % str(uuid.uuid4())) - with open(filename, "wt") as f: - f.write(json.dumps(chat_state1, indent=2)) - return filename - - export_chat_event = export_chats_btn.click(get_chats1, inputs=chat_state, outputs=chats_file, queue=False, - api_name='export_chats' if allow_api else None) - - def add_chats_from_file(db1s, requests_state1, file, chat_state1, radio_chats1, chat_exception_text1, - auth_filename=None, auth_freeze=None): - if not file: - return None, chat_state1, gr.update(choices=list(chat_state1.keys()), value=None), chat_exception_text1 - if isinstance(file, str): - files = [file] - else: - files = file - if not files: - return None, chat_state1, gr.update(choices=list(chat_state1.keys()), value=None), chat_exception_text1 - chat_exception_list = [] - for file1 in files: - try: - if hasattr(file1, 'name'): - file1 = file1.name - with open(file1, "rt") as f: - new_chats = json.loads(f.read()) - for chat1_k, chat1_v in new_chats.items(): - # ignore chat1_k, regenerate and de-dup to avoid loss - chat_state1, _ = save_chat(db1s, requests_state1, chat1_v, chat_state1, chat_is_list=True) - except BaseException as e: - t, v, tb = sys.exc_info() - ex = ''.join(traceback.format_exception(t, v, tb)) - ex_str = "File %s exception: %s" % (file1, str(e)) - print(ex_str, flush=True) - chat_exception_list.append(ex_str) - chat_exception_text1 = '\n'.join(chat_exception_list) - # save chat to auth file - save_auth(requests_state1, auth_filename, auth_freeze, chat_state1=chat_state1) - return None, chat_state1, gr.update(choices=list(chat_state1.keys()), value=None), chat_exception_text1 - - # note for update_user_db_func output is ignored for db - chatup_change_eventa = chatsup_output.change(user_state_setup, - inputs=[my_db_state, requests_state, langchain_mode], - outputs=[my_db_state, requests_state, langchain_mode], - show_progress='minimal') - add_chats_from_file_func = functools.partial(add_chats_from_file, - auth_filename=kwargs['auth_filename'], - auth_freeze=kwargs['auth_freeze'], - ) - chatup_change_event = chatup_change_eventa.then(add_chats_from_file_func, - inputs=[my_db_state, requests_state] + - [chatsup_output, chat_state, radio_chats, - chat_exception_text], - outputs=[chatsup_output, chat_state, radio_chats, - chat_exception_text], - queue=False, - api_name='add_to_chats' if allow_api else None) - - clear_chat_event = clear_chat_btn.click(fn=clear_texts, - inputs=[text_output, text_output2] + text_outputs, - outputs=[text_output, text_output2] + text_outputs, - queue=False, api_name='clear' if allow_api else None) \ - .then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False) \ - .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) - - clear_eventa = save_chat_btn.click(user_state_setup, - inputs=[my_db_state, requests_state, langchain_mode], - outputs=[my_db_state, requests_state, langchain_mode], - show_progress='minimal') - save_chat_func = functools.partial(save_chat, - auth_filename=kwargs['auth_filename'], - auth_freeze=kwargs['auth_freeze'], - ) - clear_event = clear_eventa.then(save_chat_func, - inputs=[my_db_state, requests_state] + - [text_output, text_output2] + text_outputs + - [chat_state], - outputs=[chat_state, radio_chats], - api_name='save_chat' if allow_api else None) - if kwargs['score_model']: - clear_event2 = clear_event.then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) - - # NOTE: clear of instruction/iinput for nochat has to come after score, - # because score for nochat consumes actual textbox, while chat consumes chat history filled by user() - no_chat_args = dict(fn=fun, - inputs=[model_state, my_db_state, selection_docs_state, requests_state] + inputs_list, - outputs=text_output_nochat, - queue=queue, - ) - submit_event_nochat = submit_nochat.click(**no_chat_args, api_name='submit_nochat' if allow_api else None) \ - .then(clear_torch_cache) \ - .then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None, queue=queue) \ - .then(clear_instruct, None, instruction_nochat) \ - .then(clear_instruct, None, iinput_nochat) \ - .then(clear_torch_cache) - # copy of above with text box submission - submit_event_nochat2 = instruction_nochat.submit(**no_chat_args) \ - .then(clear_torch_cache) \ - .then(**score_args_nochat, queue=queue) \ - .then(clear_instruct, None, instruction_nochat) \ - .then(clear_instruct, None, iinput_nochat) \ - .then(clear_torch_cache) - - submit_event_nochat_api = submit_nochat_api.click(fun_with_dict_str, - inputs=[model_state, my_db_state, selection_docs_state, - requests_state, - inputs_dict_str], - outputs=text_output_nochat_api, - queue=True, # required for generator - api_name='submit_nochat_api' if allow_api else None) - - submit_event_nochat_api_plain = submit_nochat_api_plain.click(fun_with_dict_str_plain, - inputs=inputs_dict_str, - outputs=text_output_nochat_api, - queue=False, - api_name='submit_nochat_plain_api' if allow_api else None) - - def load_model(model_name, lora_weights, server_name, model_state_old, prompt_type_old, - load_8bit, load_4bit, low_bit_mode, - load_gptq, load_exllama, use_safetensors, revision, - use_gpu_id, gpu_id, max_seq_len1, rope_scaling1, - model_path_llama1, model_name_gptj1, model_name_gpt4all_llama1, - n_gpu_layers1, n_batch1, n_gqa1, llamacpp_dict_more1, - system_prompt1): - try: - llamacpp_dict = ast.literal_eval(llamacpp_dict_more1) - except: - print("Failed to use user input for llamacpp_dict_more1 dict", flush=True) - llamacpp_dict = {} - llamacpp_dict.update(dict(model_path_llama=model_path_llama1, - model_name_gptj=model_name_gptj1, - model_name_gpt4all_llama=model_name_gpt4all_llama1, - n_gpu_layers=n_gpu_layers1, - n_batch=n_batch1, - n_gqa=n_gqa1, - )) - - # ensure no API calls reach here - if is_public: - raise RuntimeError("Illegal access for %s" % model_name) - # ensure old model removed from GPU memory - if kwargs['debug']: - print("Pre-switch pre-del GPU memory: %s" % get_torch_allocated(), flush=True) - - model0 = model_state0['model'] - if isinstance(model_state_old['model'], str) and \ - model0 is not None and \ - hasattr(model0, 'cpu'): - # best can do, move model loaded at first to CPU - model0.cpu() - - if model_state_old['model'] is not None and \ - not isinstance(model_state_old['model'], str): - if hasattr(model_state_old['model'], 'cpu'): - try: - model_state_old['model'].cpu() - except Exception as e: - # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data! - print("Unable to put model on CPU: %s" % str(e), flush=True) - del model_state_old['model'] - model_state_old['model'] = None - - if model_state_old['tokenizer'] is not None and not isinstance(model_state_old['tokenizer'], str): - del model_state_old['tokenizer'] - model_state_old['tokenizer'] = None - - clear_torch_cache() - if kwargs['debug']: - print("Pre-switch post-del GPU memory: %s" % get_torch_allocated(), flush=True) - if not model_name: - model_name = no_model_str - if model_name == no_model_str: - # no-op if no model, just free memory - # no detranscribe needed for model, never go into evaluate - lora_weights = no_lora_str - server_name = no_server_str - return kwargs['model_state_none'].copy(), \ - model_name, lora_weights, server_name, prompt_type_old, \ - gr.Slider.update(maximum=256), \ - gr.Slider.update(maximum=256) - - # don't deepcopy, can contain model itself - all_kwargs1 = all_kwargs.copy() - all_kwargs1['base_model'] = model_name.strip() - all_kwargs1['load_8bit'] = load_8bit - all_kwargs1['load_4bit'] = load_4bit - all_kwargs1['low_bit_mode'] = low_bit_mode - all_kwargs1['load_gptq'] = load_gptq - all_kwargs1['load_exllama'] = load_exllama - all_kwargs1['use_safetensors'] = use_safetensors - all_kwargs1['revision'] = None if not revision else revision # transcribe, don't pass '' - all_kwargs1['use_gpu_id'] = use_gpu_id - all_kwargs1['gpu_id'] = int(gpu_id) if gpu_id not in [None, 'None'] else None # detranscribe - all_kwargs1['llamacpp_dict'] = llamacpp_dict - all_kwargs1['max_seq_len'] = max_seq_len1 - try: - all_kwargs1['rope_scaling'] = str_to_dict(rope_scaling1) # transcribe - except: - print("Failed to use user input for rope_scaling dict", flush=True) - all_kwargs1['rope_scaling'] = {} - model_lower = model_name.strip().lower() - if model_lower in inv_prompt_type_to_model_lower: - prompt_type1 = inv_prompt_type_to_model_lower[model_lower] - else: - prompt_type1 = prompt_type_old - - # detranscribe - if lora_weights == no_lora_str: - lora_weights = '' - all_kwargs1['lora_weights'] = lora_weights.strip() - if server_name == no_server_str: - server_name = '' - all_kwargs1['inference_server'] = server_name.strip() - - model1, tokenizer1, device1 = get_model(reward_type=False, - **get_kwargs(get_model, exclude_names=['reward_type'], - **all_kwargs1)) - clear_torch_cache() - - tokenizer_base_model = model_name - prompt_dict1, error0 = get_prompt(prompt_type1, '', - chat=False, context='', reduced=False, making_context=False, - return_dict=True, system_prompt=system_prompt1) - model_state_new = dict(model=model1, tokenizer=tokenizer1, device=device1, - base_model=model_name, tokenizer_base_model=tokenizer_base_model, - lora_weights=lora_weights, inference_server=server_name, - prompt_type=prompt_type1, prompt_dict=prompt_dict1, - ) - - max_max_new_tokens1 = get_max_max_new_tokens(model_state_new, **kwargs) - - if kwargs['debug']: - print("Post-switch GPU memory: %s" % get_torch_allocated(), flush=True) - return model_state_new, model_name, lora_weights, server_name, prompt_type1, \ - gr.Slider.update(maximum=max_max_new_tokens1), \ - gr.Slider.update(maximum=max_max_new_tokens1) - - def get_prompt_str(prompt_type1, prompt_dict1, system_prompt1, which=0): - if prompt_type1 in ['', None]: - print("Got prompt_type %s: %s" % (which, prompt_type1), flush=True) - return str({}) - prompt_dict1, prompt_dict_error = get_prompt(prompt_type1, prompt_dict1, chat=False, context='', - reduced=False, making_context=False, return_dict=True, - system_prompt=system_prompt1) - if prompt_dict_error: - return str(prompt_dict_error) - else: - # return so user can manipulate if want and use as custom - return str(prompt_dict1) - - get_prompt_str_func1 = functools.partial(get_prompt_str, which=1) - get_prompt_str_func2 = functools.partial(get_prompt_str, which=2) - prompt_type.change(fn=get_prompt_str_func1, inputs=[prompt_type, prompt_dict, system_prompt], - outputs=prompt_dict, queue=False) - prompt_type2.change(fn=get_prompt_str_func2, inputs=[prompt_type2, prompt_dict2, system_prompt], - outputs=prompt_dict2, - queue=False) - - def dropdown_prompt_type_list(x): - return gr.Dropdown.update(value=x) - - def chatbot_list(x, model_used_in): - return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]') - - load_model_args = dict(fn=load_model, - inputs=[model_choice, lora_choice, server_choice, model_state, prompt_type, - model_load8bit_checkbox, model_load4bit_checkbox, model_low_bit_mode, - model_load_gptq, model_load_exllama_checkbox, - model_safetensors_checkbox, model_revision, - model_use_gpu_id_checkbox, model_gpu, - max_seq_len, rope_scaling, - model_path_llama, model_name_gptj, model_name_gpt4all_llama, - n_gpu_layers, n_batch, n_gqa, llamacpp_dict_more, - system_prompt], - outputs=[model_state, model_used, lora_used, server_used, - # if prompt_type changes, prompt_dict will change via change rule - prompt_type, max_new_tokens, min_new_tokens, - ]) - prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type) - chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output) - nochat_update_args = dict(fn=chatbot_list, inputs=[text_output_nochat, model_used], outputs=text_output_nochat) - load_model_event = load_model_button.click(**load_model_args, - api_name='load_model' if allow_api and not is_public else None) \ - .then(**prompt_update_args) \ - .then(**chatbot_update_args) \ - .then(**nochat_update_args) \ - .then(clear_torch_cache) - - load_model_args2 = dict(fn=load_model, - inputs=[model_choice2, lora_choice2, server_choice2, model_state2, prompt_type2, - model_load8bit_checkbox2, model_load4bit_checkbox2, model_low_bit_mode2, - model_load_gptq2, model_load_exllama_checkbox2, - model_safetensors_checkbox2, model_revision2, - model_use_gpu_id_checkbox2, model_gpu2, - max_seq_len2, rope_scaling2, - model_path_llama2, model_name_gptj2, model_name_gpt4all_llama2, - n_gpu_layers2, n_batch2, n_gqa2, llamacpp_dict_more2, - system_prompt], - outputs=[model_state2, model_used2, lora_used2, server_used2, - # if prompt_type2 changes, prompt_dict2 will change via change rule - prompt_type2, max_new_tokens2, min_new_tokens2 - ]) - prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2) - chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2) - load_model_event2 = load_model_button2.click(**load_model_args2, - api_name='load_model2' if allow_api and not is_public else None) \ - .then(**prompt_update_args2) \ - .then(**chatbot_update_args2) \ - .then(clear_torch_cache) - - def dropdown_model_lora_server_list(model_list0, model_x, - lora_list0, lora_x, - server_list0, server_x, - model_used1, lora_used1, server_used1, - model_used2, lora_used2, server_used2, - ): - model_new_state = [model_list0[0] + [model_x]] - model_new_options = [*model_new_state[0]] - if no_model_str in model_new_options: - model_new_options.remove(no_model_str) - model_new_options = [no_model_str] + sorted(model_new_options) - x1 = model_x if model_used1 == no_model_str else model_used1 - x2 = model_x if model_used2 == no_model_str else model_used2 - ret1 = [gr.Dropdown.update(value=x1, choices=model_new_options), - gr.Dropdown.update(value=x2, choices=model_new_options), - '', model_new_state] - - lora_new_state = [lora_list0[0] + [lora_x]] - lora_new_options = [*lora_new_state[0]] - if no_lora_str in lora_new_options: - lora_new_options.remove(no_lora_str) - lora_new_options = [no_lora_str] + sorted(lora_new_options) - # don't switch drop-down to added lora if already have model loaded - x1 = lora_x if model_used1 == no_model_str else lora_used1 - x2 = lora_x if model_used2 == no_model_str else lora_used2 - ret2 = [gr.Dropdown.update(value=x1, choices=lora_new_options), - gr.Dropdown.update(value=x2, choices=lora_new_options), - '', lora_new_state] - - server_new_state = [server_list0[0] + [server_x]] - server_new_options = [*server_new_state[0]] - if no_server_str in server_new_options: - server_new_options.remove(no_server_str) - server_new_options = [no_server_str] + sorted(server_new_options) - # don't switch drop-down to added server if already have model loaded - x1 = server_x if model_used1 == no_model_str else server_used1 - x2 = server_x if model_used2 == no_model_str else server_used2 - ret3 = [gr.Dropdown.update(value=x1, choices=server_new_options), - gr.Dropdown.update(value=x2, choices=server_new_options), - '', server_new_state] - - return tuple(ret1 + ret2 + ret3) - - add_model_lora_server_event = \ - add_model_lora_server_button.click(fn=dropdown_model_lora_server_list, - inputs=[model_options_state, new_model] + - [lora_options_state, new_lora] + - [server_options_state, new_server] + - [model_used, lora_used, server_used] + - [model_used2, lora_used2, server_used2], - outputs=[model_choice, model_choice2, new_model, model_options_state] + - [lora_choice, lora_choice2, new_lora, lora_options_state] + - [server_choice, server_choice2, new_server, - server_options_state], - queue=False) - - go_event = go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None, - queue=False) \ - .then(lambda: gr.update(visible=True), None, normal_block, queue=False) \ - .then(**load_model_args, queue=False).then(**prompt_update_args, queue=False) - - def compare_textbox_fun(x): - return gr.Textbox.update(visible=x) - - def compare_column_fun(x): - return gr.Column.update(visible=x) - - def compare_prompt_fun(x): - return gr.Dropdown.update(visible=x) - - def slider_fun(x): - return gr.Slider.update(visible=x) - - compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, - api_name="compare_checkbox" if allow_api else None) \ - .then(compare_column_fun, compare_checkbox, col_model2) \ - .then(compare_prompt_fun, compare_checkbox, prompt_type2) \ - .then(compare_textbox_fun, compare_checkbox, score_text2) \ - .then(slider_fun, compare_checkbox, max_new_tokens2) \ - .then(slider_fun, compare_checkbox, min_new_tokens2) - # FIXME: add score_res2 in condition, but do better - - # callback for logging flagged input/output - callback.setup(inputs_list + [text_output, text_output2] + text_outputs, "flagged_data_points") - flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output, text_output2] + text_outputs, - None, - preprocess=False, - api_name='flag' if allow_api else None, queue=False) - flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output_nochat], None, - preprocess=False, - api_name='flag_nochat' if allow_api else None, queue=False) - - def get_system_info(): - if is_public: - time.sleep(10) # delay to avoid spam since queue=False - return gr.Textbox.update(value=system_info_print()) - - system_event = system_btn.click(get_system_info, outputs=system_text, - api_name='system_info' if allow_api else None, queue=False) - - def get_system_info_dict(system_input1, **kwargs1): - if system_input1 != os.getenv("ADMIN_PASS", ""): - return json.dumps({}) - exclude_list = ['admin_pass', 'examples'] - sys_dict = {k: v for k, v in kwargs1.items() if - isinstance(v, (str, int, bool, float)) and k not in exclude_list} - try: - sys_dict.update(system_info()) - except Exception as e: - # protection - print("Exception: %s" % str(e), flush=True) - return json.dumps(sys_dict) - - system_kwargs = all_kwargs.copy() - system_kwargs.update(dict(command=str(' '.join(sys.argv)))) - get_system_info_dict_func = functools.partial(get_system_info_dict, **all_kwargs) - - system_dict_event = system_btn2.click(get_system_info_dict_func, - inputs=system_input, - outputs=system_text2, - api_name='system_info_dict' if allow_api else None, - queue=False, # queue to avoid spam - ) - - def get_hash(): - return kwargs['git_hash'] - - system_event = system_btn3.click(get_hash, - outputs=system_text3, - api_name='system_hash' if allow_api else None, - queue=False, - ) - - def get_model_names(): - key_list = ['base_model', 'prompt_type', 'prompt_dict'] + list(kwargs['other_model_state_defaults'].keys()) - # don't want to expose backend inference server IP etc. - # key_list += ['inference_server'] - return [{k: x[k] for k in key_list if k in x} for x in model_states] - - models_list_event = system_btn4.click(get_model_names, - outputs=system_text4, - api_name='model_names' if allow_api else None, - queue=False, - ) - - def count_chat_tokens(model_state1, chat1, prompt_type1, prompt_dict1, - system_prompt1, chat_conversation1, - memory_restriction_level1=0, - keep_sources_in_context1=False, - ): - if model_state1 and not isinstance(model_state1['tokenizer'], str): - tokenizer = model_state1['tokenizer'] - elif model_state0 and not isinstance(model_state0['tokenizer'], str): - tokenizer = model_state0['tokenizer'] - else: - tokenizer = None - if tokenizer is not None: - langchain_mode1 = 'LLM' - add_chat_history_to_context1 = True - # fake user message to mimic bot() - chat1 = copy.deepcopy(chat1) - chat1 = chat1 + [['user_message1', None]] - model_max_length1 = tokenizer.model_max_length - context1 = history_to_context(chat1, - langchain_mode=langchain_mode1, - add_chat_history_to_context=add_chat_history_to_context1, - prompt_type=prompt_type1, - prompt_dict=prompt_dict1, - chat=True, - model_max_length=model_max_length1, - memory_restriction_level=memory_restriction_level1, - keep_sources_in_context=keep_sources_in_context1, - system_prompt=system_prompt1, - chat_conversation=chat_conversation1) - tokens = tokenizer(context1, return_tensors="pt")['input_ids'] - if len(tokens.shape) == 1: - return str(tokens.shape[0]) - elif len(tokens.shape) == 2: - return str(tokens.shape[1]) - else: - return "N/A" - else: - return "N/A" - - count_chat_tokens_func = functools.partial(count_chat_tokens, - memory_restriction_level1=memory_restriction_level, - keep_sources_in_context1=kwargs['keep_sources_in_context']) - count_tokens_event = count_chat_tokens_btn.click(fn=count_chat_tokens_func, - inputs=[model_state, text_output, prompt_type, prompt_dict, - system_prompt, chat_conversation], - outputs=chat_token_count, - api_name='count_tokens' if allow_api else None) - - # don't pass text_output, don't want to clear output, just stop it - # cancel only stops outer generation, not inner generation or non-generation - stop_btn.click(lambda: None, None, None, - cancels=submits1 + submits2 + submits3 + submits4 + - [submit_event_nochat, submit_event_nochat2] + - [eventdb1, eventdb2, eventdb3] + - [eventdb7a, eventdb7, eventdb8a, eventdb8, eventdb9a, eventdb9, eventdb12a, eventdb12] + - db_events + - [eventdbloadla, eventdbloadlb] + - [clear_event] + - [submit_event_nochat_api, submit_event_nochat] + - [load_model_event, load_model_event2] + - [count_tokens_event] - , - queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache, queue=False) - - if kwargs['auth'] is not None: - auth = authf - load_func = user_state_setup - load_inputs = [my_db_state, requests_state, login_btn, login_btn] - load_outputs = [my_db_state, requests_state, login_btn] - else: - auth = None - load_func, load_inputs, load_outputs = None, None, None - - app_js = wrap_js_to_lambda( - len(load_inputs) if load_inputs else 0, - get_dark_js() if kwargs['dark'] else None, - get_heap_js(heap_app_id) if is_heap_analytics_enabled else None) - - load_event = demo.load(fn=load_func, inputs=load_inputs, outputs=load_outputs, _js=app_js) - - if load_func: - load_event2 = load_event.then(load_login_func, - inputs=login_inputs, - outputs=login_outputs) - if not kwargs['large_file_count_mode']: - load_event3 = load_event2.then(**get_sources_kwargs) - load_event4 = load_event3.then(fn=update_dropdown, inputs=docs_state, outputs=document_choice) - load_event5 = load_event4.then(**show_sources_kwargs) - load_event6 = load_event5.then(**get_viewable_sources_args) - load_event7 = load_event6.then(**viewable_kwargs) - - demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open']) - favicon_file = "h2o-logo.svg" - favicon_path = favicon_file - if not os.path.isfile(favicon_file): - print("favicon_path1=%s not found" % favicon_file, flush=True) - alt_path = os.path.dirname(os.path.abspath(__file__)) - favicon_path = os.path.join(alt_path, favicon_file) - if not os.path.isfile(favicon_path): - print("favicon_path2: %s not found in %s" % (favicon_file, alt_path), flush=True) - alt_path = os.path.dirname(alt_path) - favicon_path = os.path.join(alt_path, favicon_file) - if not os.path.isfile(favicon_path): - print("favicon_path3: %s not found in %s" % (favicon_file, alt_path), flush=True) - favicon_path = None - - if kwargs['prepare_offline_level'] > 0: - from src.prepare_offline import go_prepare_offline - go_prepare_offline(**locals()) - return - - scheduler = BackgroundScheduler() - scheduler.add_job(func=clear_torch_cache, trigger="interval", seconds=20) - if is_public and \ - kwargs['base_model'] not in non_hf_types: - # FIXME: disable for gptj, langchain or gpt4all modify print itself - # FIXME: and any multi-threaded/async print will enter model output! - scheduler.add_job(func=ping, trigger="interval", seconds=60) - if is_public or os.getenv('PING_GPU'): - scheduler.add_job(func=ping_gpu, trigger="interval", seconds=60 * 10) - scheduler.start() - - # import control - if kwargs['langchain_mode'] == 'Disabled' and \ - os.environ.get("TEST_LANGCHAIN_IMPORT") and \ - kwargs['base_model'] not in non_hf_types: - assert 'gpt_langchain' not in sys.modules, "Dev bug, import of langchain when should not have" - assert 'langchain' not in sys.modules, "Dev bug, import of langchain when should not have" - - # set port in case GRADIO_SERVER_PORT was already set in prior main() call, - # gradio does not listen if change after import - # Keep None if not set so can find an open port above used ports - server_port = os.getenv('GRADIO_SERVER_PORT') - if server_port is not None: - server_port = int(server_port) - - demo.launch(share=kwargs['share'], - server_name=kwargs['server_name'], - show_error=True, - server_port=server_port, - favicon_path=favicon_path, - prevent_thread_lock=True, - auth=auth, - auth_message=auth_message, - root_path=kwargs['root_path']) - if kwargs['verbose'] or not (kwargs['base_model'] in ['gptj', 'gpt4all_llama']): - print("Started Gradio Server and/or GUI: server_name: %s port: %s" % (kwargs['server_name'], server_port), - flush=True) - if kwargs['block_gradio_exit']: - demo.block_thread() - - -def show_doc(db1s, selection_docs_state1, requests_state1, - langchain_mode1, - single_document_choice1, - view_raw_text_checkbox1, - text_context_list1, - dbs1=None, - load_db_if_exists1=None, - db_type1=None, - use_openai_embedding1=None, - hf_embedding_model1=None, - migrate_embedding_model_or_db1=None, - auto_migrate_db1=None, - verbose1=False, - get_userid_auth1=None, - max_raw_chunks=1000000, - api=False, - n_jobs=-1): - file = single_document_choice1 - document_choice1 = [single_document_choice1] - content = None - db_documents = [] - db_metadatas = [] - if db_type1 in ['chroma', 'chroma_old']: - assert langchain_mode1 is not None - langchain_mode_paths = selection_docs_state1['langchain_mode_paths'] - langchain_mode_types = selection_docs_state1['langchain_mode_types'] - from src.gpt_langchain import set_userid, get_any_db, get_docs_and_meta - set_userid(db1s, requests_state1, get_userid_auth1) - top_k_docs = -1 - db = get_any_db(db1s, langchain_mode1, langchain_mode_paths, langchain_mode_types, - dbs=dbs1, - load_db_if_exists=load_db_if_exists1, - db_type=db_type1, - use_openai_embedding=use_openai_embedding1, - hf_embedding_model=hf_embedding_model1, - migrate_embedding_model=migrate_embedding_model_or_db1, - auto_migrate_db=auto_migrate_db1, - for_sources_list=True, - verbose=verbose1, - n_jobs=n_jobs, - ) - query_action = False # long chunks like would be used for summarize - # the below is as or filter, so will show doc or by chunk, unrestricted - from langchain.vectorstores import Chroma - if isinstance(db, Chroma): - # chroma >= 0.4 - if view_raw_text_checkbox1: - one_filter = \ - [{"source": {"$eq": x}, "chunk_id": {"$gte": 0}} if query_action else {"source": {"$eq": x}, - "chunk_id": { - "$gte": -1}} - for x in document_choice1][0] - else: - one_filter = \ - [{"source": {"$eq": x}, "chunk_id": {"$gte": 0}} if query_action else {"source": {"$eq": x}, - "chunk_id": { - "$eq": -1}} - for x in document_choice1][0] - filter_kwargs = dict(filter={"$and": [dict(source=one_filter['source']), - dict(chunk_id=one_filter['chunk_id'])]}) - else: - # migration for chroma < 0.4 - one_filter = \ - [{"source": {"$eq": x}, "chunk_id": {"$gte": 0}} if query_action else {"source": {"$eq": x}, - "chunk_id": { - "$eq": -1}} - for x in document_choice1][0] - if view_raw_text_checkbox1: - # like or, full raw all chunk types - filter_kwargs = dict(filter=one_filter) - else: - filter_kwargs = dict(filter={"$and": [dict(source=one_filter['source']), - dict(chunk_id=one_filter['chunk_id'])]}) - db_documents, db_metadatas = get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs, - text_context_list=text_context_list1) - # order documents - from langchain.docstore.document import Document - docs_with_score = [(Document(page_content=result[0], metadata=result[1] or {}), 0) - for result in zip(db_documents, db_metadatas)] - doc_chunk_ids = [x.get('chunk_id', -1) for x in db_metadatas] - doc_page_ids = [x.get('page', 0) for x in db_metadatas] - doc_hashes = [x.get('doc_hash', 'None') for x in db_metadatas] - docs_with_score = [x for hx, px, cx, x in - sorted(zip(doc_hashes, doc_page_ids, doc_chunk_ids, docs_with_score), - key=lambda x: (x[0], x[1], x[2])) - # if cx == -1 - ] - db_metadatas = [x[0].metadata for x in docs_with_score][:max_raw_chunks] - db_documents = [x[0].page_content for x in docs_with_score][:max_raw_chunks] - # done reordering - if view_raw_text_checkbox1: - content = [dict_to_html(x) + '\n' + text_to_html(y) for x, y in zip(db_metadatas, db_documents)] - else: - content = [text_to_html(y) for x, y in zip(db_metadatas, db_documents)] - content = '\n'.join(content) - content = f""" - - -