import copy import functools import inspect import os import sys from gradio_themes import H2oTheme, SoftTheme, get_h2o_title, get_simple_title, get_dark_js from utils import get_githash, flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print, \ ping from finetune import prompt_type_to_model_name, prompt_types_strings, generate_prompt, inv_prompt_type_to_model_lower from generate import get_model, languages_covered, evaluate, eval_func_param_names, score_qa import gradio as gr from apscheduler.schedulers.background import BackgroundScheduler def go_gradio(**kwargs): allow_api = kwargs['allow_api'] is_public = kwargs['is_public'] is_hf = kwargs['is_hf'] is_low_mem = kwargs['is_low_mem'] n_gpus = kwargs['n_gpus'] admin_pass = kwargs['admin_pass'] model_state0 = kwargs['model_state0'] score_model_state0 = kwargs['score_model_state0'] queue = True # easy update of kwargs needed for evaluate() etc. kwargs.update(locals()) if 'mbart-' in kwargs['model_lower']: instruction_label_nochat = "Text to translate" else: instruction_label_nochat = "Instruction (Shift-Enter or push Submit to send message," \ " use Enter for multiple input lines)" if kwargs['input_lines'] > 1: instruction_label = "You (Shift-Enter or push Submit to send message, use Enter for multiple input lines)" else: instruction_label = "You (Enter or push Submit to send message, shift-enter for more lines)" title = 'h2oGPT' if 'h2ogpt-research' in kwargs['base_model']: title += " [Research demonstration]" if kwargs['verbose']: description = f"""Model {kwargs['base_model']} Instruct dataset. For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). Command: {str(' '.join(sys.argv))} Hash: {get_githash()} """ else: description = "For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
" if is_public: description += "If this host is busy, try [gpt.h2o.ai 20B](https://gpt.h2o.ai) and [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) and [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)
" description += """

DISCLAIMERS:

""" if kwargs['verbose']: task_info_md = f""" ### Task: {kwargs['task_info']}""" else: task_info_md = '' if kwargs['h2ocolors']: css_code = """footer {visibility: hidden;} body{background:linear-gradient(#f5f5f5,#e5e5e5);} body.dark{background:linear-gradient(#000000,#0d0d0d);} """ else: css_code = """footer {visibility: hidden}""" if kwargs['gradio_avoid_processing_markdown']: from gradio_client import utils as client_utils from gradio.components import Chatbot # gradio has issue with taking too long to process input/output for markdown etc. # Avoid for now, allow raw html to render, good enough for chatbot. def _postprocess_chat_messages(self, chat_message: str): if chat_message is None: return None elif isinstance(chat_message, (tuple, list)): filepath = chat_message[0] mime_type = client_utils.get_mimetype(filepath) filepath = self.make_temp_copy_if_needed(filepath) return { "name": filepath, "mime_type": mime_type, "alt_text": chat_message[1] if len(chat_message) > 1 else None, "data": None, # These last two fields are filled in by the frontend "is_file": True, } elif isinstance(chat_message, str): return chat_message else: raise ValueError(f"Invalid message for Chatbot component: {chat_message}") Chatbot._postprocess_chat_messages = _postprocess_chat_messages theme = H2oTheme() if kwargs['h2ocolors'] else SoftTheme() demo = gr.Blocks(theme=theme, css=css_code, title="h2oGPT", analytics_enabled=False) callback = gr.CSVLogger() model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options'] if kwargs['base_model'].strip() not in model_options: lora_options = [kwargs['base_model'].strip()] + model_options lora_options = kwargs['extra_lora_options'] if kwargs['lora_weights'].strip() not in lora_options: lora_options = [kwargs['lora_weights'].strip()] + lora_options # always add in no lora case # add fake space so doesn't go away in gradio dropdown no_lora_str = no_model_str = '[None/Remove]' lora_options = [no_lora_str] + kwargs['extra_lora_options'] # FIXME: why double? # always add in no model case so can free memory # add fake space so doesn't go away in gradio dropdown model_options = [no_model_str] + model_options # transcribe, will be detranscribed before use by evaluate() if not kwargs['lora_weights'].strip(): kwargs['lora_weights'] = no_lora_str if not kwargs['base_model'].strip(): kwargs['base_model'] = no_model_str # transcribe for gradio kwargs['gpu_id'] = str(kwargs['gpu_id']) no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]' output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get( 'base_model') else no_model_msg output_label0_model2 = no_model_msg with demo: # avoid actual model/tokenizer here or anything that would be bad to deepcopy # https://github.com/gradio-app/gradio/issues/3558 model_state = gr.State(['model', 'tokenizer', kwargs['device'], kwargs['base_model']]) model_state2 = gr.State([None, None, None, None]) model_options_state = gr.State([model_options]) lora_options_state = gr.State([lora_options]) gr.Markdown(f""" {get_h2o_title(title) if kwargs['h2ocolors'] else get_simple_title(title)} {description} {task_info_md} """) if is_hf: gr.HTML( '''
Duplicate SpaceDuplicate this Space to skip the queue and run in a private space
''') # go button visible if base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0'] go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary") normal_block = gr.Row(visible=not base_wanted) with normal_block: with gr.Tabs(): with gr.Row(): col_nochat = gr.Column(visible=not kwargs['chat']) with col_nochat: # FIXME: for model comparison, and check rest text_output_nochat = gr.Textbox(lines=5, label=output_label0) instruction_nochat = gr.Textbox( lines=kwargs['input_lines'], label=instruction_label_nochat, placeholder=kwargs['placeholder_instruction'], ) iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction", placeholder=kwargs['placeholder_input']) submit_nochat = gr.Button("Submit") flag_btn_nochat = gr.Button("Flag") if not kwargs['auto_score']: with gr.Column(visible=kwargs['score_model']): score_btn_nochat = gr.Button("Score last prompt & response") score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) else: with gr.Column(visible=kwargs['score_model']): score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) col_chat = gr.Column(visible=kwargs['chat']) with col_chat: with gr.Row(): text_output = gr.Chatbot(label=output_label0).style(height=kwargs['height'] or 400) text_output2 = gr.Chatbot(label=output_label0_model2, visible=False).style( height=kwargs['height'] or 400) with gr.Row(): with gr.Column(scale=50): instruction = gr.Textbox( lines=kwargs['input_lines'], label=instruction_label, placeholder=kwargs['placeholder_instruction'], ) with gr.Row(): submit = gr.Button(value='Submit').style(full_width=False, size='sm') stop_btn = gr.Button(value="Stop").style(full_width=False, size='sm') with gr.Row(): clear = gr.Button("New Conversation") flag_btn = gr.Button("Flag") if not kwargs['auto_score']: # FIXME: For checkbox model2 with gr.Column(visible=kwargs['score_model']): with gr.Row(): score_btn = gr.Button("Score last prompt & response").style( full_width=False, size='sm') score_text = gr.Textbox("Response Score: NA", show_label=False) score_res2 = gr.Row(visible=False) with score_res2: score_btn2 = gr.Button("Score last prompt & response 2").style( full_width=False, size='sm') score_text2 = gr.Textbox("Response Score2: NA", show_label=False) else: with gr.Column(visible=kwargs['score_model']): score_text = gr.Textbox("Response Score: NA", show_label=False) score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False) retry = gr.Button("Regenerate") undo = gr.Button("Undo") with gr.TabItem("Input/Output"): with gr.Row(): if 'mbart-' in kwargs['model_lower']: src_lang = gr.Dropdown(list(languages_covered().keys()), value=kwargs['src_lang'], label="Input Language") tgt_lang = gr.Dropdown(list(languages_covered().keys()), value=kwargs['tgt_lang'], label="Output Language") with gr.TabItem("Expert"): with gr.Row(): with gr.Column(): stream_output = gr.components.Checkbox(label="Stream output", value=kwargs['stream_output']) prompt_type = gr.Dropdown(prompt_types_strings, value=kwargs['prompt_type'], label="Prompt Type", visible=not is_public) prompt_type2 = gr.Dropdown(prompt_types_strings, value=kwargs['prompt_type'], label="Prompt Type Model 2", visible=not is_public and False) do_sample = gr.Checkbox(label="Sample", info="Enable sampler, required for use of temperature, top_p, top_k", value=kwargs['do_sample']) temperature = gr.Slider(minimum=0.01, maximum=3, value=kwargs['temperature'], label="Temperature", info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)") top_p = gr.Slider(minimum=0, maximum=1, value=kwargs['top_p'], label="Top p", info="Cumulative probability of tokens to sample from") top_k = gr.Slider( minimum=0, maximum=100, step=1, value=kwargs['top_k'], label="Top k", info='Num. tokens to sample from' ) # FIXME: https://github.com/h2oai/h2ogpt/issues/106 if os.getenv('TESTINGFAIL'): max_beams = 8 if not (is_low_mem or is_public) else 1 else: max_beams = 1 num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1, value=min(max_beams, kwargs['num_beams']), label="Beams", info="Number of searches for optimal overall probability. " "Uses more GPU memory/compute") max_max_new_tokens = 2048 if not is_low_mem else kwargs['max_new_tokens'] max_new_tokens = gr.Slider( minimum=1, maximum=max_max_new_tokens, step=1, value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length", ) min_new_tokens = gr.Slider( minimum=0, maximum=max_max_new_tokens, step=1, value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length", ) early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search", value=kwargs['early_stopping']) max_max_time = 60 * 5 if not is_public else 60 * 2 if is_hf: max_max_time = min(max_max_time, 60 * 1) max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1, value=min(max_max_time, kwargs['max_time']), label="Max. time", info="Max. time to search optimal output.") repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0, value=kwargs['repetition_penalty'], label="Repetition Penalty") num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1, value=kwargs['num_return_sequences'], label="Number Returns", info="Must be <= num_beams", visible=not is_public) iinput = gr.Textbox(lines=4, label="Input", placeholder=kwargs['placeholder_input'], visible=not is_public) context = gr.Textbox(lines=3, label="System Pre-Context", info="Directly pre-appended without prompt processing", visible=not is_public) chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'], visible=not is_public) with gr.TabItem("Models"): load_msg = "Load-Unload Model/LORA" if not is_public \ else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO" load_msg2 = "Load-Unload Model/LORA 2" if not is_public \ else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2" compare_checkbox = gr.components.Checkbox(label="Compare Mode", value=False, visible=not is_public) with gr.Row(): n_gpus_list = [str(x) for x in list(range(-1, n_gpus))] with gr.Column(): with gr.Row(): with gr.Column(scale=50): model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model", value=kwargs['base_model']) lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA", value=kwargs['lora_weights'], visible=kwargs['show_lora']) with gr.Column(scale=1): load_model_button = gr.Button(load_msg) model_load8bit_checkbox = gr.components.Checkbox( label="Load 8-bit [requires support]", value=kwargs['load_8bit']) model_infer_devices_checkbox = gr.components.Checkbox( label="Choose Devices [If not Checked, use all GPUs]", value=kwargs['infer_devices']) model_gpu = gr.Dropdown(n_gpus_list, label="GPU ID 2 [-1 = all GPUs, if Choose is enabled]", value=kwargs['gpu_id']) model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'], interactive=False) lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'], visible=kwargs['show_lora'], interactive=False) with gr.Row(): with gr.Column(scale=50): new_model = gr.Textbox(label="New Model HF name/path") new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora']) with gr.Column(scale=1): add_model_button = gr.Button("Add new model name") add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora']) col_model2 = gr.Column(visible=False) with col_model2: with gr.Row(): with gr.Column(scale=50): model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2", value=no_model_str) lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2", value=no_lora_str, visible=kwargs['show_lora']) with gr.Column(scale=1): load_model_button2 = gr.Button(load_msg2) model_load8bit_checkbox2 = gr.components.Checkbox( label="Load 8-bit 2 [requires support]", value=kwargs['load_8bit']) model_infer_devices_checkbox2 = gr.components.Checkbox( label="Choose Devices 2 [If not Checked, use all GPUs]", value=kwargs[ 'infer_devices']) model_gpu2 = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs, if choose is enabled]", value=kwargs['gpu_id']) # no model/lora loaded ever in model2 by default model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str) lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str, visible=kwargs['show_lora']) with gr.TabItem("System"): admin_row = gr.Row() with admin_row: admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public) admin_btn = gr.Button(value="Admin Access", visible=is_public) system_row = gr.Row(visible=not is_public) with system_row: with gr.Column(): with gr.Row(): system_btn = gr.Button(value='Get System Info') system_text = gr.Textbox(label='System Info', interactive=False) with gr.Row(): zip_btn = gr.Button("Zip") zip_text = gr.Textbox(label="Zip file name", interactive=False) file_output = gr.File() with gr.Row(): s3up_btn = gr.Button("S3UP") s3up_text = gr.Textbox(label='S3UP result', interactive=False) # Get flagged data zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']]) zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text], queue=False) s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text, queue=False) def check_admin_pass(x): return gr.update(visible=x == admin_pass) def close_admin(x): return gr.update(visible=not (x == admin_pass)) admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row, queue=False) \ .then(close_admin, inputs=admin_pass_textbox, outputs=admin_row, queue=False) # Get inputs to evaluate() all_kwargs = kwargs.copy() all_kwargs.update(locals()) inputs_list = get_inputs_list(all_kwargs, kwargs['model_lower']) from functools import partial kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list} # ensure present for k in inputs_kwargs_list: assert k in kwargs_evaluate, "Missing %s" % k fun = partial(evaluate, **kwargs_evaluate) fun2 = partial(evaluate, **kwargs_evaluate) dark_mode_btn = gr.Button("Dark Mode", variant="primary").style( size="sm", ) # FIXME: Could add exceptions for non-chat but still streaming exception_text = gr.Textbox(value="", visible=kwargs['chat'], label='Chat Exceptions', interactive=False) dark_mode_btn.click( None, None, None, _js=get_dark_js(), api_name="dark" if allow_api else None, queue=False, ) # Control chat and non-chat blocks, which can be independently used by chat checkbox swap def col_nochat_fun(x): return gr.Column.update(visible=not x) def col_chat_fun(x): return gr.Column.update(visible=x) def context_fun(x): return gr.Textbox.update(visible=not x) chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox" if allow_api else None) \ .then(col_chat_fun, chat, col_chat) \ .then(context_fun, chat, context) \ .then(col_chat_fun, chat, exception_text) # examples after submit or any other buttons for chat or no chat if kwargs['examples'] is not None and kwargs['show_examples']: gr.Examples(examples=kwargs['examples'], inputs=inputs_list) # Score def score_last_response(*args, nochat=False, model2=False): """ Similar to user() """ args_list = list(args) max_length_tokenize = 512 if is_low_mem else 2048 cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM smodel = score_model_state0[0] stokenizer = score_model_state0[1] sdevice = score_model_state0[2] if not nochat: history = args_list[-1] if history is None: if not model2: # maybe only doing first model, no need to complain print("Bad history in scoring last response, fix for now", flush=True) history = [] if smodel is not None and \ stokenizer is not None and \ sdevice is not None and \ history is not None and len(history) > 0 and \ history[-1] is not None and \ len(history[-1]) >= 2: os.environ['TOKENIZERS_PARALLELISM'] = 'false' question = history[-1][0] answer = history[-1][1] else: return 'Response Score: NA' else: answer = args_list[-1] instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat') question = args_list[instruction_nochat_arg_id] if question is None: return 'Response Score: Bad Question' if answer is None: return 'Response Score: Bad Answer' score = score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_len) if isinstance(score, str): return 'Response Score: NA' return 'Response Score: {:.1%}'.format(score) def noop_score_last_response(*args, **kwargs): return "Response Score: Disabled" if kwargs['score_model']: score_fun = score_last_response else: score_fun = noop_score_last_response score_args = dict(fn=score_fun, inputs=inputs_list + [text_output], outputs=[score_text], ) score_args2 = dict(fn=partial(score_fun, model2=True), inputs=inputs_list + [text_output2], outputs=[score_text2], ) score_args_nochat = dict(fn=partial(score_fun, nochat=True), inputs=inputs_list + [text_output_nochat], outputs=[score_text_nochat], ) if not kwargs['auto_score']: score_event = score_btn.click(**score_args, queue=queue, api_name='score' if allow_api else None) \ .then(**score_args2, queue=queue, api_name='score2' if allow_api else None) score_event_nochat = score_btn_nochat.click(**score_args_nochat, queue=queue, api_name='score_nochat' if allow_api else None) def user(*args, undo=False, sanitize_user_prompt=True, model2=False): """ User that fills history for bot :param args: :param undo: :param sanitize_user_prompt: :param model2: :return: """ args_list = list(args) user_message = args_list[0] input1 = args_list[1] context1 = args_list[2] if input1 and not user_message.endswith(':'): user_message1 = user_message + ":" + input1 elif input1: user_message1 = user_message + input1 else: user_message1 = user_message if sanitize_user_prompt: from better_profanity import profanity user_message1 = profanity.censor(user_message1) if user_message1 in ['']: # e.g. when user just hits enter in textbox, # else will have : : on single line, which seems to be "ok" for LLM but not usual user_message1 = '\n' history = args_list[-1] if undo and history: history.pop() args_list = args_list[:-1] # FYI, even if unused currently if history is None: if not model2: # no need to complain so often unless model1 print("Bad history, fix for now", flush=True) history = [] # ensure elements not mixed across models as output, # even if input is currently same source history = history.copy() if undo: return history else: # FIXME: compare, same history for now return history + [[user_message1, None]] def bot(*args, retry=False): """ bot that consumes history for user input instruction (from input_list) itself is not consumed by bot :param args: :param retry: :return: """ args_list = copy.deepcopy(list(args)) history = args_list[-1] # model_state is -2 if retry and history: history.pop() if not history: print("No history", flush=True) history = [['', None]] yield history, '' return # ensure output will be unique to models history = copy.deepcopy(history) instruction1 = history[-1][0] context1 = '' if kwargs['chat_history'] > 0: prompt_type_arg_id = eval_func_param_names.index('prompt_type') prompt_type1 = args_list[prompt_type_arg_id] chat_arg_id = eval_func_param_names.index('chat') chat1 = args_list[chat_arg_id] context1 = '' for histi in range(len(history) - 1): data_point = dict(instruction=history[histi][0], input='', output=history[histi][1]) context1 += generate_prompt(data_point, prompt_type1, chat1, reduced=True)[0].replace( '
', '\n') if not context1.endswith('\n'): context1 += '\n' if context1 and not context1.endswith('\n'): context1 += '\n' # ensure if terminates abruptly, then human continues on next line args_list[0] = instruction1 # override original instruction with history from user # only include desired chat history args_list[2] = context1[-kwargs['chat_history']:] model_state1 = args_list[-2] if model_state1[0] is None or model_state1[0] == no_model_str: history = [['', None]] yield history, '' return args_list = args_list[:-2] fun1 = partial(evaluate, model_state1, **kwargs_evaluate) try: for output in fun1(*tuple(args_list)): bot_message = output history[-1][1] = bot_message yield history, '' except StopIteration: yield history, '' except RuntimeError as e: if "generator raised StopIteration" in str(e): # assume last entry was bad, undo history.pop() yield history, '' else: if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None: history[-1][1] = '' yield history, str(e) raise except Exception as e: # put error into user input ex = "Exception: %s" % str(e) if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None: history[-1][1] = '' yield history, ex raise return # NORMAL MODEL user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']), inputs=inputs_list + [text_output], outputs=text_output, ) bot_args = dict(fn=bot, inputs=inputs_list + [model_state] + [text_output], outputs=[text_output, exception_text], ) retry_bot_args = dict(fn=functools.partial(bot, retry=True), inputs=inputs_list + [model_state] + [text_output], outputs=[text_output, exception_text], ) undo_user_args = dict(fn=functools.partial(user, undo=True), inputs=inputs_list + [text_output], outputs=text_output, ) # MODEL2 user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], model2=True), inputs=inputs_list + [text_output2], outputs=text_output2, ) bot_args2 = dict(fn=bot, inputs=inputs_list + [model_state2] + [text_output2], outputs=[text_output2, exception_text], ) retry_bot_args2 = dict(fn=functools.partial(bot, retry=True), inputs=inputs_list + [model_state2] + [text_output2], outputs=[text_output2, exception_text], ) undo_user_args2 = dict(fn=functools.partial(user, undo=True), inputs=inputs_list + [text_output2], outputs=text_output2, ) def clear_instruct(): return gr.Textbox.update(value='') if kwargs['auto_score']: score_args_submit = score_args score_args2_submit = score_args2 else: score_args_submit = dict(fn=lambda: None, inputs=None, outputs=None) score_args2_submit = dict(fn=lambda: None, inputs=None, outputs=None) # in case 2nd model, consume instruction first, so can clear quickly # bot doesn't consume instruction itself, just history from user, so why works submit_event1a = instruction.submit(**user_args, queue=queue, api_name='instruction' if allow_api else None) submit_event1b = submit_event1a.then(**user_args2, api_name='instruction2' if allow_api else None) submit_event1c = submit_event1b.then(clear_instruct, None, instruction) \ .then(clear_instruct, None, iinput) submit_event1d = submit_event1c.then(**bot_args, api_name='instruction_bot' if allow_api else None, queue=queue) submit_event1e = submit_event1d.then(**score_args_submit, api_name='instruction_bot_score' if allow_api else None, queue=queue) submit_event1f = submit_event1e.then(**bot_args2, api_name='instruction_bot2' if allow_api else None, queue=queue) submit_event1g = submit_event1f.then(**score_args2_submit, api_name='instruction_bot_score2' if allow_api else None, queue=queue) submit_event1h = submit_event1g.then(clear_torch_cache) submit_event2a = submit.click(**user_args, api_name='submit' if allow_api else None) submit_event2b = submit_event2a.then(**user_args2, api_name='submit2' if allow_api else None) submit_event2c = submit_event2b.then(clear_instruct, None, instruction) \ .then(clear_instruct, None, iinput) submit_event2d = submit_event2c.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue) submit_event2e = submit_event2d.then(**score_args_submit, api_name='submit_bot_score' if allow_api else None, queue=queue) submit_event2f = submit_event2e.then(**bot_args2, api_name='submit_bot2' if allow_api else None, queue=queue) submit_event2g = submit_event2f.then(**score_args2_submit, api_name='submit_bot_score2' if allow_api else None, queue=queue) submit_event2h = submit_event2g.then(clear_torch_cache) submit_event3a = retry.click(**user_args, api_name='retry' if allow_api else None) submit_event3b = submit_event3a.then(**user_args2, api_name='retry2' if allow_api else None) submit_event3c = submit_event3b.then(clear_instruct, None, instruction) \ .then(clear_instruct, None, iinput) submit_event3d = submit_event3c.then(**retry_bot_args, api_name='retry_bot' if allow_api else None, queue=queue) submit_event3e = submit_event3d.then(**score_args_submit, api_name='retry_bot_score' if allow_api else None, queue=queue) submit_event3f = submit_event3e.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None, queue=queue) submit_event3g = submit_event3f.then(**score_args2_submit, api_name='retry_bot_score2' if allow_api else None, queue=queue) submit_event3h = submit_event3g.then(clear_torch_cache) submit_event4 = undo.click(**undo_user_args, api_name='undo' if allow_api else None) \ .then(**undo_user_args2, api_name='undo2' if allow_api else None) \ .then(clear_instruct, None, instruction) \ .then(clear_instruct, None, iinput) \ .then(**score_args_submit, api_name='undo_score' if allow_api else None) \ .then(**score_args2_submit, api_name='undo_score2' if allow_api else None) # does both models clear.click(lambda: None, None, text_output, queue=False, api_name='clear' if allow_api else None) \ .then(lambda: None, None, text_output2, queue=False, api_name='clear2' if allow_api else None) # NOTE: clear of instruction/iinput for nochat has to come after score, # because score for nochat consumes actual textbox, while chat consumes chat history filled by user() submit_event_nochat = submit_nochat.click(fun, inputs=[model_state] + inputs_list, outputs=text_output_nochat, queue=queue, api_name='submit_nochat' if allow_api else None) \ .then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None, queue=queue) \ .then(clear_instruct, None, instruction_nochat) \ .then(clear_instruct, None, iinput_nochat) \ .then(clear_torch_cache) def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id): # ensure old model removed from GPU memory if kwargs['debug']: print("Pre-switch pre-del GPU memory: %s" % get_torch_allocated(), flush=True) model0 = model_state0[0] if isinstance(model_state_old[0], str) and model0 is not None: # best can do, move model loaded at first to CPU model0.cpu() if model_state_old[0] is not None and not isinstance(model_state_old[0], str): try: model_state_old[0].cpu() except Exception as e: # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data! print("Unable to put model on CPU: %s" % str(e), flush=True) del model_state_old[0] model_state_old[0] = None if model_state_old[1] is not None and not isinstance(model_state_old[1], str): del model_state_old[1] model_state_old[1] = None clear_torch_cache() if kwargs['debug']: print("Pre-switch post-del GPU memory: %s" % get_torch_allocated(), flush=True) if model_name is None or model_name == no_model_str: # no-op if no model, just free memory # no detranscribe needed for model, never go into evaluate lora_weights = no_lora_str return [None, None, None, model_name], model_name, lora_weights, prompt_type_old all_kwargs1 = all_kwargs.copy() all_kwargs1['base_model'] = model_name.strip() all_kwargs1['load_8bit'] = load_8bit all_kwargs1['infer_devices'] = infer_devices all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe model_lower = model_name.strip().lower() if model_lower in inv_prompt_type_to_model_lower: prompt_type1 = inv_prompt_type_to_model_lower[model_lower] else: prompt_type1 = prompt_type_old # detranscribe if lora_weights == no_lora_str: lora_weights = '' all_kwargs1['lora_weights'] = lora_weights.strip() model1, tokenizer1, device1 = get_model(**all_kwargs1) clear_torch_cache() if kwargs['debug']: print("Post-switch GPU memory: %s" % get_torch_allocated(), flush=True) return [model1, tokenizer1, device1, model_name], model_name, lora_weights, prompt_type1 def dropdown_prompt_type_list(x): return gr.Dropdown.update(value=x) def chatbot_list(x, model_used_in): return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]') load_model_args = dict(fn=load_model, inputs=[model_choice, lora_choice, model_state, prompt_type, model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu], outputs=[model_state, model_used, lora_used, prompt_type]) prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type) chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output) nochat_update_args = dict(fn=chatbot_list, inputs=[text_output_nochat, model_used], outputs=text_output_nochat) if not is_public: load_model_event = load_model_button.click(**load_model_args) \ .then(**prompt_update_args) \ .then(**chatbot_update_args) \ .then(**nochat_update_args) \ .then(clear_torch_cache) load_model_args2 = dict(fn=load_model, inputs=[model_choice2, lora_choice2, model_state2, prompt_type2, model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2], outputs=[model_state2, model_used2, lora_used2, prompt_type2]) prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2) chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2) if not is_public: load_model_event2 = load_model_button2.click(**load_model_args2) \ .then(**prompt_update_args2) \ .then(**chatbot_update_args2) \ .then(clear_torch_cache) def dropdown_model_list(list0, x): new_state = [list0[0] + [x]] new_options = [*new_state[0]] return gr.Dropdown.update(value=x, choices=new_options), \ gr.Dropdown.update(value=x, choices=new_options), \ '', new_state add_model_event = add_model_button.click(fn=dropdown_model_list, inputs=[model_options_state, new_model], outputs=[model_choice, model_choice2, new_model, model_options_state], queue=False) def dropdown_lora_list(list0, x, model_used1, lora_used1, model_used2, lora_used2): new_state = [list0[0] + [x]] new_options = [*new_state[0]] # don't switch drop-down to added lora if already have model loaded x1 = x if model_used1 == no_model_str else lora_used1 x2 = x if model_used2 == no_model_str else lora_used2 return gr.Dropdown.update(value=x1, choices=new_options), \ gr.Dropdown.update(value=x2, choices=new_options), \ '', new_state add_lora_event = add_lora_button.click(fn=dropdown_lora_list, inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2, lora_used2], outputs=[lora_choice, lora_choice2, new_lora, lora_options_state], queue=False) go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None, queue=False) \ .then(lambda: gr.update(visible=True), None, normal_block, queue=False) \ .then(**load_model_args, queue=False).then(**prompt_update_args, queue=False) def compare_textbox_fun(x): return gr.Textbox.update(visible=x) def compare_column_fun(x): return gr.Column.update(visible=x) def compare_prompt_fun(x): return gr.Dropdown.update(visible=x) compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, api_name="compare_checkbox" if allow_api else None) \ .then(compare_column_fun, compare_checkbox, col_model2) \ .then(compare_prompt_fun, compare_checkbox, prompt_type2) \ .then(compare_textbox_fun, compare_checkbox, score_text2) # FIXME: add score_res2 in condition, but do better # callback for logging flagged input/output callback.setup(inputs_list + [text_output, text_output2], "flagged_data_points") flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output, text_output2], None, preprocess=False, api_name='flag' if allow_api else None, queue=False) flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output_nochat], None, preprocess=False, api_name='flag_nochat' if allow_api else None, queue=False) def get_system_info(): return gr.Textbox.update(value=system_info_print()) system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info' if allow_api else None, queue=False) # don't pass text_output, don't want to clear output, just stop it # cancel only stops outer generation, not inner generation or non-generation stop_btn.click(lambda: None, None, None, cancels=[submit_event1d, submit_event1f, submit_event2d, submit_event2f, submit_event3d, submit_event3f, submit_event_nochat], queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache, queue=False) demo.load(None, None, None, _js=get_dark_js() if kwargs['h2ocolors'] else None) demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open']) favicon_path = "h2o-logo.svg" scheduler = BackgroundScheduler() scheduler.add_job(func=clear_torch_cache, trigger="interval", seconds=20) if is_public: scheduler.add_job(func=ping, trigger="interval", seconds=60) scheduler.start() demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True, favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True) print("Started GUI", flush=True) if kwargs['block_gradio_exit']: demo.block_thread() input_args_list = ['model_state'] inputs_kwargs_list = ['debug', 'save_dir', 'hard_stop_list', 'sanitize_bot_response', 'model_state0', 'is_low_mem', 'raise_generate_gpu_exceptions', 'chat_context', 'concurrency_count', 'lora_weights'] def get_inputs_list(inputs_dict, model_lower): """ map gradio objects in locals() to inputs for evaluate(). :param inputs_dict: :param model_lower: :return: """ inputs_list_names = list(inspect.signature(evaluate).parameters) inputs_list = [] for k in inputs_list_names: if k == 'kwargs': continue if k in input_args_list + inputs_kwargs_list: # these are added via partial, not taken as input continue if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']: continue inputs_list.append(inputs_dict[k]) return inputs_list