Spaces:
Build error
Build error
File size: 18,348 Bytes
965ac15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import os
import json
import shutil
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
import requests
import tarfile
from langchain.schema import Document
import hashlib
import xml.etree.ElementTree as ET
from urllib import request
from s3_utils import S3Handler
from config import get_settings
from PyPDF2 import PdfReader
class PubMedDownloader:
def __init__(self, s3_handler, pubmed_base_url, pinecone_index, embedding_model, from_date="2024-01-01", until_date="2024-11-01", limit=3):
self.s3_handler = s3_handler
self.settings = get_settings()
self.pubmed_base_url = pubmed_base_url
self.from_date = from_date
self.until_date = until_date
self.limit = limit
self.local_download_dir = "downloaded_pdfs"
os.makedirs(self.local_download_dir, exist_ok=True)
self.pinecone_index = pinecone_index # Pinecone index instance
self.embedding_model = embedding_model # Embedding model instance
def split_and_embed(self, documents, metadata_entry):
"""Split documents into chunks and embed them sequentially."""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self.settings.CHUNK_SIZE,
chunk_overlap=self.settings.CHUNK_OVERLAP
)
chunks = text_splitter.split_documents(documents)
print(f'total chunks created: {len(chunks)}')
batch_size = 50
pmc_id = metadata_entry['pmc_id']
for batch_index in range(0, len(chunks), batch_size):
batch = chunks[batch_index: batch_index + batch_size]
print(f'len of batch: {len(batch)}')
try:
# Process a single batch
# Create ids for the batch
# ids = [f"chunk_{batch_index}_{j}" for j in range(len(batch))]
ids = [f"{pmc_id}_chunk_{batch_index}_{j}" for j in range(len(batch))]
print(f'len of ids: {len(ids)}')
print(f'id sample: {ids[0]}')
# Get texts and generate embeddings
texts = [doc.page_content for doc in batch]
print(f'len of texts: {len(texts)}')
embeddings = self.embedding_model.embed_documents(texts)
metadata = []
for doc in batch:
chunk_metadata = metadata_entry.copy() # Copy base metadata
chunk_metadata["text"] = doc.page_content # Add chunk-specific text
metadata.append(chunk_metadata)
# Create upsert batch
to_upsert = list(zip(ids, embeddings, metadata))
# Upsert to Pinecone
self.pinecone_index.upsert(vectors=to_upsert)
print(f"Successfully upserted {len(to_upsert)} chunks to Pinecone.")
except Exception as e:
print(f"Error processing batch {batch_index}: {e}")
def fetch_records(self, resumption_token=None):
"""
Fetch records from PubMed using optional resumptionToken.
Args:
resumption_token (str, optional): Token to resume fetching records. Defaults to None.
Returns:
ElementTree.Element: Parsed XML root of the API response.
"""
# Build the base URL
url = f"{self.pubmed_base_url}"
# Define parameters
params = {
"format" : "tgz"
}
# Add date range if provided
if self.from_date and self.until_date:
params["from"] = self.from_date
params["until"] = self.until_date
# Add resumptionToken if available
if resumption_token:
params["resumptionToken"] = resumption_token
print(f"Using resumption token: {resumption_token}")
# Make the request
response = requests.get(url, params=params)
response.raise_for_status() # Raise an error for bad HTTP responses
# Parse and return the XML content
return ET.fromstring(response.content)
def save_metadata_to_s3(self, metadata, bucket, key):
print(f"Saving metadata to S3: s3://{bucket}/{key}")
self.s3_handler.upload_string_to_s3(metadata, bucket, key)
def save_pdf_to_s3(self, local_filename, bucket, s3_key):
"""Upload PDF to S3 and then delete the local file."""
print(f"Uploading PDF to S3: s3://{bucket}/{s3_key}")
self.s3_handler.upload_file_to_s3(local_filename, bucket, s3_key)
# Delete the local file after upload
if os.path.exists(local_filename):
os.remove(local_filename)
print(f"Deleted local file: {local_filename}")
else:
print(f"File not found for deletion: {local_filename}")
def update_metadata_and_upload(self, metadata_entry, bucket_name, metadata_file_key):
"""Update metadata list with a new entry and upload it to S3 as JSON."""
# Add new entry to metadata
# Convert metadata to JSON and upload to S3
metadata_json = json.dumps(metadata_entry, indent=4)
self.s3_handler.upload_string_to_s3(metadata_json, bucket_name, metadata_file_key)
print(f"Updated metadata uploaded to s3://{bucket_name}/{metadata_file_key}")
def download_and_process_tgz(self, ftp_link, pmc_id):
try:
metadata_entry = {}
# Step 1: Download TGZ
local_tgz_filename = os.path.join(self.local_download_dir, f"{pmc_id}.tgz")
print(f"Downloading TGZ: {ftp_link} saving in {local_tgz_filename}")
request.urlretrieve(ftp_link, local_tgz_filename)
# Step 2: Extract TGZ into a temporary directory
temp_extract_dir = os.path.join(self.local_download_dir, f"{pmc_id}_temp")
os.makedirs(temp_extract_dir, exist_ok=True)
print(f"Temporary extract dir: {temp_extract_dir}")
with tarfile.open(local_tgz_filename, "r:gz") as tar:
tar.extractall(path=temp_extract_dir)
# Step 3: Handle Nested Structure (Move Contents to Target Directory)
final_extract_dir = os.path.join(self.local_download_dir, pmc_id)
os.makedirs(final_extract_dir, exist_ok=True)
# Check if the archive creates a single root directory (e.g., PMC8419487/)
extracted_items = os.listdir(temp_extract_dir)
if len(extracted_items) == 1 and os.path.isdir(os.path.join(temp_extract_dir, extracted_items[0])):
# Move contents of the single folder to the final directory
nested_dir = os.path.join(temp_extract_dir, extracted_items[0])
for item in os.listdir(nested_dir):
shutil.move(os.path.join(nested_dir, item), final_extract_dir)
else:
# If no single root folder, move all files directly
for item in extracted_items:
shutil.move(os.path.join(temp_extract_dir, item), final_extract_dir)
print(f"Final extracted dir: {final_extract_dir}")
# Clean up the temporary extraction directory
shutil.rmtree(temp_extract_dir)
print(f"Temporary extract dir deleted: {temp_extract_dir}")
# Process the extracted files as before...
xml_file = [f for f in os.listdir(final_extract_dir) if f.endswith(".xml") or f.endswith(".nxml")]
pdf_path = [f for f in os.listdir(final_extract_dir) if f.endswith("pdf")]
if xml_file:
xml_path = os.path.join(final_extract_dir, xml_file[0])
metadata_entry = self.process_xml_metadata(xml_path, pmc_id)
else:
print(f"No XML file found in TGZ for PMCID: {pmc_id}")
print(f'Skipping article')
if pdf_path:
pdf_path = os.path.join(final_extract_dir, pdf_path[0])
document = self.download_and_process_pdf(pdf_path, pmc_id, self.settings.AWS_BUCKET_NAME)
else:
if metadata_entry.get('body_text') and metadata_entry['body_text'] != "N/A":
document = Document(
page_content=metadata_entry['body_text'], metadata=metadata_entry
)
metadata_entry.pop("body_text")
else:
print(f'Body content and PDF both not found, hence skipping this PDF')
document = None
# Cleanup: Remove the downloaded TGZ file
if os.path.exists(local_tgz_filename):
os.remove(local_tgz_filename)
print(f"Removed file: {local_tgz_filename}")
if os.path.exists(final_extract_dir):
shutil.rmtree(final_extract_dir)
return metadata_entry, document
except Exception as e:
print(f"Cannot download TGZ file for {pmc_id} : ftp link : {ftp_link}")
print(f"[ERROR] {str(e)}")
return {}, None
def extract_text_from_element(self, element):
"""
Recursively extract all text from an XML element and its children.
Args:
element (Element): XML element to extract text from.
Returns:
str: Concatenated text content of the element and its children.
"""
text_content = element.text or "" # Start with the element's own text
for child in element:
text_content += self.extract_text_from_element(child) # Recurse into children
if child.tail: # Include any tail text after the child element
text_content += child.tail
return text_content.strip()
def process_xml_metadata(self, xml_path, pmc_id):
tree = ET.parse(xml_path)
root = tree.getroot()
# Extract metadata
title_elem = root.find(".//article-title")
title = title_elem.text if title_elem is not None else "No Title Available"
# title = root.find(".//article-title").text if root.find(".//article-title") else "No Title Available"
# abstract = root.find(".//abstract/p").text if root.find(".//abstract/p") else "No Abstract Available"
# Abstract extraction
abstract_elem = root.find(".//abstract/p")
abstract = abstract_elem.text if abstract_elem is not None else "No Abstract Available"
# doi = root.find(".//article-id[@pub-id-type='doi']").text if root.find(".//article-id[@pub-id-type='doi']") else "N/A"
# DOI extraction
doi_elem = root.find(".//article-id[@pub-id-type='doi']")
doi = doi_elem.text if doi_elem is not None else "N/A"
# authors = [f"{author.find('surname').text}, {author.find('given-names').text}"
# for author in root.findall(".//contrib/name")]
authors = []
for author in root.findall(".//contrib/name"):
surname = author.find('surname')
given_names = author.find('given-names')
# Safely handle missing elements
surname_text = surname.text if surname is not None else "Unknown Surname"
given_names_text = given_names.text if given_names is not None else "Unknown Given Names"
authors.append(f"{surname_text}, {given_names_text}")
keywords = [kw.text for kw in root.findall(".//kwd")]
# Extract publication date
pub_date_node = root.find(".//pub-date")
if pub_date_node is not None:
month = pub_date_node.find("month").text if pub_date_node.find("month") is not None else "N/A"
year = pub_date_node.find("year").text if pub_date_node.find("year") is not None else "N/A"
pub_type = pub_date_node.attrib.get("pub-type", "N/A")
publication_date = f"{year}-{month}" if month != "N/A" else year
else:
publication_date = "N/A"
# Extract text content from <body>
body_node = root.find(".//body")
body_text = ""
if body_node is not None:
body_text = self.extract_text_from_element(body_node)
else:
body_text = "N/A"
# Save enriched metadata
metadata_entry = {
"pmc_id": pmc_id,
"title": title,
"abstract": abstract,
"authors": authors,
"keywords": keywords,
"doi": doi,
"source": f"https://pmc.ncbi.nlm.nih.gov/articles/{pmc_id}",
"publication_date" : publication_date,
"body_text" : body_text
}
return metadata_entry
def download_and_process_pdf(self, pdf_path, pmc_id, bucket_name):
try:
pdf_reader = PdfReader(pdf_path)
text = "".join(page.extract_text() for page in pdf_reader.pages)
# Create document object
document = Document(
page_content=text,
metadata={"source": f"s3://{bucket_name}/{pmc_id}.pdf"}
)
return document
except Exception as e:
print(f"Error processing PDF for {pmc_id}: {e}")
return None
def process_and_save(self, bucket_name, metadata_file_key):
# Load existing metadata from S3
try:
metadata_content = self.s3_handler.download_string_from_s3(bucket_name, metadata_file_key)
existing_metadata = json.loads(metadata_content)
existing_ids = {record["pmc_id"] for record in existing_metadata}
print(f"Found {len(existing_ids)} existing records in metadata.")
except Exception as e:
# If metadata file doesn't exist or is empty, initialize an empty list
print(f"Could not load metadata: {e}. Assuming no existing records.")
existing_metadata = []
existing_ids = set()
resumption_token = None
while True:
root = self.fetch_records(resumption_token=resumption_token)
print(f'len of records: {len(root.findall(".//record"))}')
resumption = root.find(".//resumption")
print(f'resumption token: {resumption}')
for record in root.findall(".//record"):
# print(f'first record: ')
pmc_id = record.attrib.get("id")
# print(f'[INFO] pmc id : {pmc_id}')
if pmc_id in existing_ids:
# print(f"Skipping already downloaded record: {pmc_id}")
continue
pdf_link = None
ftp_link = None
for link in record.findall("link"):
if link.attrib.get("format") == "tgz":
ftp_link = link.attrib.get("href")
if link.attrib.get("format") == "pdf":
pdf_link = link.attrib.get("href")
print(f'[INFO] links found: pdf {pdf_link} and ftp {ftp_link}')
metadata = { }
# Process `tgz` first if available
if ftp_link:
metadata, document = self.download_and_process_tgz(ftp_link, pmc_id)
# documents.append(document)
if not document:
# print(f'this document doesnt have content. continue .. ')
continue
self.split_and_embed([document], metadata)
# Create document object
existing_metadata.append(metadata)
self.update_metadata_and_upload(existing_metadata, bucket_name , metadata_file_key)
resumption = root.find(".//resumption")
if resumption is not None:
link = resumption.find("link")
if link is not None:
resumption_token = link.attrib.get("token", "").strip()
if not resumption_token:
print("No more tokens found, stopping pagination.")
break
else:
print("No link found, stopping pagination.")
break
else:
print("No resumption element, stopping pagination.")
break
def create_or_connect_index(index_name, dimension):
pc = pinecone.Pinecone(settings.PINECONE_API_KEY)
"""Create or connect to existing Pinecone index"""
spec = pinecone.ServerlessSpec(
cloud=settings.CLOUD,
region=settings.REGION
)
print(f'all indexes: {pc.list_indexes()}')
if index_name not in pc.list_indexes().names():
pc.create_index(
name=index_name,
dimension=dimension,
metric='cosine', # You can use 'dotproduct' or other metrics if needed
spec=spec
)
return pc.Index(settings.INDEX_NAME)
if __name__ == "__main__":
"""
#todo: add all args as argument parser
#todo: like from and until date, and all variables
#todo: add one variable like how many iterations we need to go
"""
# Load settings
settings = get_settings()
# Initialize S3 handler
s3_handler = S3Handler()
import pinecone
pc_index = create_or_connect_index(settings.INDEX_NAME, settings.DIMENSIONS)
# Create the downloader instance
downloader = PubMedDownloader(
s3_handler=s3_handler,
pubmed_base_url=settings.PUBMED_BASE_URL,
pinecone_index= pc_index,
embedding_model=OpenAIEmbeddings(openai_api_key=settings.OPENAI_API_KEY)
)
# Process and save
downloader.process_and_save(
bucket_name=settings.AWS_BUCKET_NAME,
metadata_file_key="pubmed_metadata/metadata.json"
)
|