File size: 5,514 Bytes
7c735e9
 
 
 
 
 
 
 
 
f309c7a
7c735e9
 
 
 
 
 
 
f309c7a
7c735e9
 
 
 
 
 
 
f309c7a
7c735e9
 
 
 
 
 
 
 
 
 
 
 
 
f309c7a
 
7c735e9
 
 
 
 
 
 
 
 
f309c7a
7c735e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f309c7a
 
 
7c735e9
f309c7a
7c735e9
 
f309c7a
7c735e9
 
 
f309c7a
7c735e9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
from theme import fast_rtc_theme
import torch
import json
import uuid
import os
import time
import pytz
from datetime import datetime
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from huggingface_hub import CommitScheduler
from pathlib import Path
import spaces
os.system("apt-get update && apt-get install -y libstdc++6")
token = os.environ["HF_TOKEN"]
model_id = "large-traversaal/Mantra-14B"
model = AutoModelForCausalLM.from_pretrained(model_id, token=token, trust_remote_code=True, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
terminators = [tokenizer.eos_token_id]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
log_folder = Path("logs")
log_folder.mkdir(parents=True, exist_ok=True)
log_file = log_folder / f"chat_log_{uuid.uuid4()}.json"
scheduler = CommitScheduler(repo_id="large-traversaal/mantra-14b-user-interaction-log", repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=0.01, token=token)
timezone = pytz.timezone("UTC")
@spaces.GPU(duration=60)
def chat(message, history, temperature, do_sample, max_tokens, top_p):
    start_time = time.time()
    timestamp = datetime.now(timezone).strftime("%Y-%m-%d %H:%M:%S %Z")
    conversation_history = []
    for item in history:
        conversation_history.append({"role": "user", "content": item[0]})
        if item[1] is not None:
            conversation_history.append({"role": "assistant", "content": item[1]})
    conversation_history.append({"role": "user", "content": message})
    messages = tokenizer.apply_chat_template(conversation_history, tokenize=False, add_generation_prompt=True)
    model_inputs = tokenizer([messages], return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(tokenizer, timeout=70.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=max_tokens, do_sample=do_sample, temperature=temperature, top_p=top_p, eos_token_id=terminators,)
    if temperature == 0:
        generate_kwargs["do_sample"] = False
    generation_thread = Thread(target=model.generate, kwargs=generate_kwargs)
    generation_thread.start()
    partial_text = ""
    for new_text in streamer:
        partial_text += new_text
        yield partial_text
    response_time = round(time.time() - start_time, 2)
    log_data = {"timestamp": timestamp,"input": message,"output": partial_text,"response_time": response_time,"temperature": temperature,"do_sample": do_sample,"max_tokens": max_tokens,"top_p": top_p}
    with scheduler.lock:
        with log_file.open("a", encoding="utf-8") as f:
            f.write(json.dumps(log_data, ensure_ascii=False) + "\n")
def clear_chat():
    return [], []
def export_chat(history):
    if not history:
        return None  # No chat history to export
    file_path = "chat_history.txt"
    with open(file_path, "w", encoding="utf-8") as f:
        for msg in history:
            f.write(f"User: {msg[0]}\nBot: {msg[1]}\n")
    return file_path
with gr.Blocks(theme=fast_rtc_theme) as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("#### ⚙️🛠 Configure Settings")
            temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.1, label="Temperature", interactive=True)
            do_sample = gr.Checkbox(label="Sampling", value=True, interactive=True)
            max_tokens = gr.Slider(minimum=128, maximum=4096, step=1, value=1024, label="max_new_tokens", interactive=True)
            top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.2, label="top_p", interactive=True)
        with gr.Column(scale=3):
            gr.Markdown("# **Chat With Mantra-14B** 💬 ")
            chat_interface = gr.ChatInterface(fn=chat,
                examples=[["What is the English translation of: 'इस मॉडल को हिंदी और अंग्रेजी डेटा पर प्रशिक्षित किया गया था'?"], 
                ["टिम अपने 3 बच्चों को ट्रिक या ट्रीटिंग के लिए ले जाता है। वे 4 घंटे बाहर रहते हैं। हर घंटे वे x घरों में जाते हैं। हर घर में हर बच्चे को 3 ट्रीट मिलते हैं। उसके बच्चों को कुल 180 ट्रीट मिलते हैं। अज्ञात चर x का मान क्या है?"], 
                ["How do you play fetch? A) Throw the object for the dog to bring back to you. B) Get the object and bring it back to the dog."]],
                additional_inputs=[temperature, do_sample, max_tokens, top_p], 
                stop_btn="⏹ Stop",
                description="Mantra-14B is a bilingual instruction-tuned LLM for Hindi and English, trained on a mixed datasets composed of 485K Hindi-English samples.",)
            with gr.Row():
                clear_btn = gr.Button("🧹 Clear Chat", variant="primary")
                export_btn = gr.Button("📥 Export Chat", variant="primary")
            clear_btn.click(fn=clear_chat, outputs=[chat_interface.chatbot, chat_interface.chatbot_value])
            export_btn.click(fn=export_chat, inputs=[chat_interface.chatbot], outputs=[gr.File()])  
demo.launch()