File size: 3,115 Bytes
664df97
 
 
 
 
 
 
 
 
 
24ceace
664df97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import gradio as gr
import torch
import time
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
print("Loading model and tokenizer...")
model_name = "large-traversaal/Phi-4-Hindi"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
print("Model and tokenizer loaded successfully!")
def generate_response(message, temperature, max_new_tokens, top_p):
    print(f"Input: {message}")
    start_time = time.time()
    inputs = tokenizer(message, return_tensors="pt").to(model.device)
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    gen_kwargs = {
        "input_ids": inputs["input_ids"],
        "streamer": streamer,
        "temperature": temperature,
        "max_new_tokens": max_new_tokens,
        "top_p": top_p,
        "do_sample": True if temperature > 0 else False,
    }
    thread = Thread(target=model.generate, kwargs=gen_kwargs)
    thread.start()
    result = []
    for text in streamer:
        result.append(text)
        yield "".join(result)
    end_time = time.time()
    time_taken = end_time - start_time
    output_text = "".join(result)
    print(f"Output: {output_text}")
    print(f"Time taken: {time_taken:.2f} seconds")
with gr.Blocks() as demo:
    gr.Markdown("# Phi-4-Hindi Demo")
    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(
                label="Input",
                placeholder="Enter your text here...",
                lines=5
            )
            with gr.Row():
                with gr.Column():
                    temperature = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.1,
                        step=0.01,
                        label="Temperature"
                    )
                with gr.Column():
                    max_new_tokens = gr.Slider(
                        minimum=50,
                        maximum=1000,
                        value=400,
                        step=10,
                        label="Max New Tokens"
                    )
                with gr.Column():
                    top_p = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.1,
                        step=0.01,
                        label="Top P"
                    )
            with gr.Row():
                clear_btn = gr.Button("Clear")
                send_btn = gr.Button("Send", variant="primary")
        with gr.Column():
            output_text = gr.Textbox(
                label="Output",
                lines=15
            )
    send_btn.click(
        fn=generate_response,
        inputs=[input_text, temperature, max_new_tokens, top_p],
        outputs=output_text
    )
    clear_btn.click(
        fn=lambda: ("", "", "", ""),
        inputs=None,
        outputs=[input_text, output_text]
    )
if __name__ == "__main__":
    demo.queue().launch()