File size: 4,435 Bytes
664df97
 
 
 
 
aa82a83
 
 
cfc8af7
 
 
 
 
 
 
664df97
 
 
cfc8af7
 
 
 
 
664df97
cfc8af7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664df97
cfc8af7
664df97
 
 
 
 
 
 
 
 
 
 
 
 
 
cfc8af7
664df97
 
 
cfc8af7
 
664df97
 
aa82a83
 
 
664df97
 
 
 
 
 
 
 
 
cfc8af7
 
 
 
 
664df97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfc8af7
664df97
 
 
cfc8af7
664df97
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
import torch
import time
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import time
import pytz
from datetime import datetime
import gradio as gr
import torch
import time
import pytz
from datetime import datetime
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
print("Loading model and tokenizer...")
model_name = "large-traversaal/Phi-4-Hindi"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
print("Model and tokenizer loaded successfully!")
option_mapping = {
    "translation": "### TRANSLATION ###",
    "mcq": "### MCQ ###",
    "nli": "### NLI ###",
    "summarization": "### SUMMARIZATION ###",
    "long response": "### LONG RESPONSE ###",
    "short response": "### SHORT RESPONSE ###",
    "direct response": "### DIRECT RESPONSE ###",
    "paraphrase": "### PARAPHRASE ###",
    "code": "### CODE ###"
}
def generate_response(message, temperature, max_new_tokens, top_p, task):
    append_text = option_mapping.get(task, "")
    prompt = f"INPUT : {message} {append_text} RESPONSE : "
    print(f"Prompt: {prompt}")
    start_time = time.time()
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    gen_kwargs = {
        "input_ids": inputs["input_ids"],
        "streamer": streamer,
        "temperature": temperature,
        "max_new_tokens": max_new_tokens,
        "top_p": top_p,
        "do_sample": True if temperature > 0 else False,
    }
    thread = Thread(target=model.generate, kwargs=gen_kwargs)
    thread.start()
    result = []
    for text in streamer:
        result.append(text)
        yield "".join(result)
    end_time = time.time()
    time_taken = end_time - start_time
    output_text = "".join(result)
    if "RESPONSE : " in output_text:
        output_text = output_text.split("RESPONSE : ", 1)[1].strip()
    print(f"Output: {output_text}")
    print(f"Time taken: {time_taken:.2f} seconds")
    pst_timezone = pytz.timezone('America/Los_Angeles')
    current_time_pst = datetime.now(pst_timezone).strftime("%Y-%m-%d %H:%M:%S %Z%z")
    print(f"Current timestamp (PST): {current_time_pst}")
with gr.Blocks() as demo:
    gr.Markdown("# Phi-4-Hindi Demo")
    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(
                label="Input",
                placeholder="Enter your text here...",
                lines=5
            )
            task_dropdown = gr.Dropdown(
                choices=["translation", "mcq", "nli", "summarization", "long response", "short response", "direct response", "paraphrase", "code"],
                value="long response",
                label="Task"
            )
            with gr.Row():
                with gr.Column():
                    temperature = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.1,
                        step=0.01,
                        label="Temperature"
                    )
                with gr.Column():
                    max_new_tokens = gr.Slider(
                        minimum=50,
                        maximum=1000,
                        value=400,
                        step=10,
                        label="Max New Tokens"
                    )
                with gr.Column():
                    top_p = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.1,
                        step=0.01,
                        label="Top P"
                    )
            with gr.Row():
                clear_btn = gr.Button("Clear")
                send_btn = gr.Button("Send", variant="primary")
        with gr.Column():
            output_text = gr.Textbox(
                label="Output",
                lines=15
            )
    send_btn.click(
        fn=generate_response,
        inputs=[input_text, temperature, max_new_tokens, top_p, task_dropdown],
        outputs=output_text
    )
    clear_btn.click(
        fn=lambda: ("", ""),
        inputs=None,
        outputs=[input_text, output_text]
    )
if __name__ == "__main__":
    demo.queue().launch()