import gradio as gr import torch import time from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread import time import pytz from datetime import datetime print("Loading model and tokenizer...") model_name = "large-traversaal/Phi-4-Hindi" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") print("Model and tokenizer loaded successfully!") def generate_response(message, temperature, max_new_tokens, top_p): print(f"Input: {message}") start_time = time.time() inputs = tokenizer(message, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) gen_kwargs = { "input_ids": inputs["input_ids"], "streamer": streamer, "temperature": temperature, "max_new_tokens": max_new_tokens, "top_p": top_p, "do_sample": True if temperature > 0 else False, } thread = Thread(target=model.generate, kwargs=gen_kwargs) thread.start() result = [] for text in streamer: result.append(text) current_output = "".join(result) if current_output.startswith(message): yield current_output[len(message):] else: yield current_output end_time = time.time() time_taken = end_time - start_time output_text = "".join(result) if output_text.startswith(message): output_text = output_text[len(message):] print(f"Output: {output_text}") print(f"Time taken: {time_taken:.2f} seconds") pst_timezone = pytz.timezone('America/Los_Angeles') current_time_pst = datetime.now(pst_timezone).strftime("%Y-%m-%d %H:%M:%S %Z%z") print(f"Current timestamp (PST): {current_time_pst}") with gr.Blocks() as demo: gr.Markdown("# Phi-4-Hindi Demo") with gr.Row(): with gr.Column(): input_text = gr.Textbox( label="Input", placeholder="Enter your text here...", lines=5 ) with gr.Row(): with gr.Column(): temperature = gr.Slider( minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Temperature" ) with gr.Column(): max_new_tokens = gr.Slider( minimum=50, maximum=1000, value=400, step=10, label="Max New Tokens" ) with gr.Column(): top_p = gr.Slider( minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Top P" ) with gr.Row(): clear_btn = gr.Button("Clear") send_btn = gr.Button("Send", variant="primary") with gr.Column(): output_text = gr.Textbox( label="Output", lines=15 ) send_btn.click( fn=generate_response, inputs=[input_text, temperature, max_new_tokens, top_p], outputs=output_text ) clear_btn.click( fn=lambda: ("", "", "", ""), inputs=None, outputs=[input_text, output_text] ) if __name__ == "__main__": demo.queue().launch()