Larisa Kolesnichenko
commited on
Commit
·
a0be2a1
1
Parent(s):
7ded684
Update app.py to include markdown text
Browse files
app.py
CHANGED
@@ -29,5 +29,48 @@ def predict(text):
|
|
29 |
return '\n'.join(results)
|
30 |
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
return '\n'.join(results)
|
30 |
|
31 |
|
32 |
+
|
33 |
+
markdown_text = '''
|
34 |
+
<br>
|
35 |
+
<br>
|
36 |
+
This space provides a gradio demo and an easy-to-run wrapper of the pre-trained model for structured sentiment analysis in Norwegian language, pre-trained on the [NoReC dataset](https://huggingface.co/datasets/norec).
|
37 |
+
This model is an implementation of the paper "Direct parsing to sentiment graphs" (Samuel _et al._, ACL 2022). The main repository that also contains the scripts for training the model, can be found on the project [github](https://github.com/jerbarnes/direct_parsing_to_sent_graph).
|
38 |
+
|
39 |
+
The current model uses the 'labeled-edge' graph encoding, and achieves the following results on the NoReC dataset:
|
40 |
+
|
41 |
+
| Unlabeled sentiment tuple F1 | Target F1 | Relative polarity precision |
|
42 |
+
|:----------------------------:|:----------:|:---------------------------:|
|
43 |
+
| 0.393 | 0.468 | 0.939 |
|
44 |
+
|
45 |
+
|
46 |
+
The model can be easily used for predicting sentiment tuples as follows:
|
47 |
+
|
48 |
+
```python
|
49 |
+
>>> import model_wrapper
|
50 |
+
>>> model = model_wrapper.PredictionModel()
|
51 |
+
>>> model.predict(['vi liker svart kaffe'])
|
52 |
+
[{'sent_id': '0',
|
53 |
+
'text': 'vi liker svart kaffe',
|
54 |
+
'opinions': [{'Source': [['vi'], ['0:2']],
|
55 |
+
'Target': [['svart', 'kaffe'], ['9:14', '15:20']],
|
56 |
+
'Polar_expression': [['liker'], ['3:8']],
|
57 |
+
'Polarity': 'Positive'}]}]
|
58 |
+
```
|
59 |
+
'''
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
with gr.Blocks() as demo:
|
64 |
+
with gr.Row(equal_height=False) as row:
|
65 |
+
text_input = gr.Textbox(label="input")
|
66 |
+
text_output = gr.Textbox(label="output")
|
67 |
+
with gr.Row(scale=4) as row:
|
68 |
+
text_button = gr.Button("submit").style(full_width=True)
|
69 |
+
|
70 |
+
text_button.click(fn=predict, inputs=text_input, outputs=text_output)
|
71 |
+
|
72 |
+
gr.Markdown(markdown_text)
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
demo.launch()
|