Spaces:
Sleeping
Sleeping
File size: 12,140 Bytes
2a566c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import torch
from torch import nn
from dataclasses import dataclass
from enum import Enum
from typing import *
from flash_attn import flash_attn_func
from flash_attn_triton import flash_attn_func as flash_attn_func_triton
from math import ceil
class AttentionBackend(Enum):
Naive = 0
FlashAttentionCuda = 1
FlashAttentionTriton = 2
global_config = {
'attn_backend': AttentionBackend.Naive
}
@dataclass
class TransformerConfig:
vocab_size: int = -1,
num_layers: int = -1,
num_heads: int = -1,
hidden_size: int = -1,
max_seq_len: int = -1,
root_model: 'ToyTransformer' = None
device: torch.device = torch.device('cpu')
dtype: torch.dtype = torch.float32
def expand_attn_mask(custom_attn_mask: torch.Tensor):
B, T = custom_attn_mask.shape
mask = custom_attn_mask.unsqueeze(1).repeat((1, T, 1))
seq_index_mask = (mask == custom_attn_mask[:, torch.arange(T)].view(B, T, 1))
return seq_index_mask & (torch.tril(mask) > 0)
# expand attn mask to cu_seqlens for flash attn
def expand_attn_mask_to_seq_lengths(attn_mask: torch.Tensor):
attn_mask = attn_mask.to('cpu')
seq_len = attn_mask.shape[0] * attn_mask.shape[1]
disjoint_point = torch.cat([torch.tensor([[True]] * attn_mask.shape[0]), attn_mask[:, 1:] != attn_mask[:, :-1]], dim=1)
return torch.cat([torch.nonzero(disjoint_point.view((-1,))), torch.tensor([[seq_len]])]).to(dtype=torch.int32)
# naive RoPE implementation following https://arxiv.org/pdf/2104.09864.pdf
def get_rope_cache_slow(seq_len: int, dim: int, theta: int, device: torch.device, dtype: torch.dtype):
assert dim % 2 == 0
freqs = theta ** (-2 * torch.arange(0, dim // 2, 1.) / dim)
freqs = torch.repeat_interleave(freqs, 2)
v1 = torch.cos(torch.arange(seq_len, dtype=torch.float).view((seq_len, 1)) * freqs)
v2 = torch.sin(torch.arange(seq_len, dtype=torch.float).view((seq_len, 1)) * freqs)
v2 = v2 * torch.tensor([1, -1] * (dim // 2))
indices = torch.tensor([j for i in range(0, dim, 2) for j in (i + 1, i)])
return v1.to(device, dtype=dtype), v2.to(device, dtype=dtype), indices.to(device)
def apply_rope_slow(x, rope_cache, positions: Optional[torch.Tensor] = None):
v1, v2, indices = rope_cache
seq_len, dim = x.shape[1:]
if positions is None:
v1 = v1[:seq_len, :]
v2 = v2[:seq_len, :]
else:
v1 = v1[positions, torch.arange(dim)].view((-1, dim))
v2 = v2[positions, torch.arange(dim)].view((-1, dim))
applied_x = x * v1 + (x * v2)[:, :, indices]
return applied_x
# Optimized RoPE implementation adapted from https://github.com/facebookresearch/llama/blob/main/llama/model.py
def get_rope_cache_fast(seq_len: int, dim: int, theta: int, device: torch.device, dtype: torch.dtype):
freqs = (1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs).float()
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
return freqs_cis.to(device)
def apply_rope_fast(x, rope_cache, positions: Optional[torch.Tensor] = None) -> torch.Tensor:
x_ = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
if positions is None and x.shape[1] < rope_cache.shape[0]:
freqs_cis = rope_cache[:x.shape[1], :]
elif positions is not None:
freqs_cis = rope_cache[positions, :]
else:
freqs_cis = rope_cache
freqs_cis = freqs_cis.view([d if i == 1 or i == x_.ndim - 1 else 1 for i, d in enumerate(x_.shape)])
applied_x = torch.view_as_real(x_ * freqs_cis).flatten(2)
return applied_x.type_as(x)
# RMSNorm implementation following https://arxiv.org/pdf/1910.07467.pdf
class RMSNorm(nn.Module):
def __init__(self, hidden_size, dtype, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size, dtype=dtype))
self.eps = eps
def forward(self, x: torch.Tensor):
x_ = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
return self.weight * x_
class AttentionHead(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.config = config
self.head_size = config.hidden_size // config.num_heads
self.dtype = config.dtype
self.q_proj = nn.Linear(config.hidden_size, self.head_size, dtype=config.dtype)
self.k_proj = nn.Linear(config.hidden_size, self.head_size, dtype=config.dtype)
self.v_proj = nn.Linear(config.hidden_size, self.head_size, dtype=config.dtype)
def forward(self, x: torch.Tensor, attn_masked_bias: Optional[torch.Tensor],
kv_cache: Optional[List[torch.Tensor]]) -> Tuple[torch.Tensor, List[torch.Tensor]]:
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
# if global_config['attn_backend'] == AttentionBackend.FlashAttentionTriton:
# padding the position indices for alignment
# positions = torch.tensor([kv_cache[0].shape[1]] * q.shape[1]).to(q.device) if kv_cache is not None else torch.arange(0, x.shape[1], 1).to(q.device)
positions = torch.tensor([kv_cache[0].shape[1]]).to(q.device) if kv_cache is not None else None
q = apply_rope_fast(q, self.config.root_model.rope_cache, positions)
k = apply_rope_fast(k, self.config.root_model.rope_cache, positions)
if kv_cache is not None:
k = torch.concat([kv_cache[0], k], dim=1)
v = torch.concat([kv_cache[1], v], dim=1)
if global_config['attn_backend'] == AttentionBackend.FlashAttentionCuda:
q, k, v, = q.unsqueeze(2), k.unsqueeze(2), v.unsqueeze(2)
attn_result = flash_attn_func(q, k, v, causal=True)
q, k, v, attn_result = q.squeeze(2), k.squeeze(2), v.squeeze(2), attn_result.squeeze(2)
elif global_config['attn_backend'] == AttentionBackend.FlashAttentionTriton:
q, k, v, = q.unsqueeze(2), k.unsqueeze(2), v.unsqueeze(2)
attn_result = flash_attn_func_triton(q, k, v, attn_masked_bias.unsqueeze(1) if attn_masked_bias is not None else None,
True if kv_cache is None else False)
q, k, v, attn_result = q.squeeze(2), k.squeeze(2), v.squeeze(2), attn_result.squeeze(2)
else:
attn_score = (q @ k.permute(0, 2, 1) / (self.head_size ** 0.5)) + attn_masked_bias
attn_result = torch.softmax(attn_score, dim=2) @ v
return attn_result, [k, v]
class MultiHeadAttention(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.config = config
self.attn_heads = nn.ModuleList([AttentionHead(config) for _ in range(config.num_heads)])
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, dtype=config.dtype)
def forward(self, x: torch.Tensor, attn_masked_bias: Optional[torch.Tensor],
kv_cache: Optional[List[torch.Tensor]]) -> Tuple[torch.Tensor, List[List[torch.Tensor]]]:
head_outputs = [head(x, attn_masked_bias, kv_cache[idx] if kv_cache is not None else None) for idx, head in
enumerate(self.attn_heads)]
return self.o_proj(torch.concat([o[0] for o in head_outputs], dim=2)), [o[1] for o in head_outputs]
class DecoderLayer(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.config = config
self.mha = MultiHeadAttention(config)
self.up_proj = nn.Linear(config.hidden_size, config.hidden_size * 4, dtype=config.dtype)
self.down_proj = nn.Linear(config.hidden_size * 4, config.hidden_size, dtype=config.dtype)
self.ln_mha = nn.LayerNorm(config.hidden_size, dtype=config.dtype)
self.ln_ffn = nn.LayerNorm(config.hidden_size, dtype=config.dtype)
self.act = nn.GELU()
def forward(self, x: torch.Tensor, attn_masked_bias: Optional[torch.Tensor],
kv_cache: Optional[List[torch.Tensor]]) -> Tuple[torch.Tensor, List[List[torch.Tensor]]]:
mha_output, new_kv_cache = self.mha(self.ln_mha(x), attn_masked_bias, kv_cache)
mha_output = x + mha_output
ffn_output = self.down_proj(self.act(self.up_proj(self.ln_ffn(mha_output))))
return mha_output + ffn_output, new_kv_cache
class ToyTransformer(nn.Module):
def __init__(self, vocab_size: int, num_layers: int, num_heads: int, hidden_size: int, max_seq_len: int,
device: torch.device = torch.device('cpu'), dtype: torch.dtype = torch.float32):
super().__init__()
self.config = TransformerConfig(vocab_size, num_layers, num_heads, hidden_size, max_seq_len, self, device,
dtype)
self.sem_embed = nn.Embedding(vocab_size, hidden_size, dtype=dtype)
self.rope_cache = get_rope_cache_fast(max_seq_len, hidden_size // num_heads, 10000, device, dtype)
self.decoder_layers = nn.ModuleList([DecoderLayer(self.config) for _ in range(num_layers)])
self.lm_head = nn.Linear(hidden_size, vocab_size, dtype=dtype)
self.to(device)
def forward(self, seq: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
kv_cache: Optional[List[torch.Tensor]] = None) -> Tuple[torch.Tensor, List[List[List[torch.Tensor]]]]:
# sanity checks
assert attn_mask is None or kv_cache is None # No support for attn_mask and kv_cache both enabled
if kv_cache is not None:
assert seq.shape[0] == 1, 'kv_cache is not supported for batch inference'
# handle flash-attn triton alignment requirement (actually only needed for backward)
seq_length = seq.shape[1]
if kv_cache is None and global_config['attn_backend'] == AttentionBackend.FlashAttentionTriton and seq_length % 128 != 0:
if attn_mask is None: # forcibly enable attn_mask due to padding
attn_mask = torch.ones(seq.shape, device=self.device)
pad_length = (ceil(seq_length / 128) * 128) - seq_length
seq = nn.functional.pad(seq, (0, pad_length))
attn_mask = nn.functional.pad(attn_mask, (0, pad_length))
# handle attn_bias
if global_config['attn_backend'] == AttentionBackend.FlashAttentionCuda:
assert attn_mask is None, 'FlashAttn-Cuda does not support custom attn_mask'
attn_masked_bias = None
elif global_config['attn_backend'] == AttentionBackend.FlashAttentionTriton and attn_mask is None:
attn_masked_bias = None
elif attn_mask is not None:
attn_masked_bias = expand_attn_mask(attn_mask)
elif attn_mask is None and kv_cache is None:
attn_masked_bias = expand_attn_mask(torch.ones(seq.shape, device=self.device))
elif kv_cache is not None:
attn_masked_bias = torch.ones((1, seq.shape[1], seq.shape[1]), dtype=torch.bool, device=self.device)
else:
attn_masked_bias = None
if attn_masked_bias is not None:
mask_zero = torch.tensor(0, dtype=self.config.dtype)
mask_val = torch.tensor(torch.finfo(self.config.dtype).min / 2, dtype=self.config.dtype)
attn_masked_bias = torch.where(attn_masked_bias, mask_zero, mask_val).to(self.device)
hidden = self.sem_embed(seq)
new_kv_cache = []
for idx, decoder in enumerate(self.decoder_layers):
hidden, layer_kv_cache = decoder(hidden, attn_masked_bias, kv_cache[idx] if kv_cache is not None else None)
new_kv_cache.append(layer_kv_cache)
logits = self.lm_head(hidden)
# remove padding for flash-attn triton
if kv_cache is None and global_config['attn_backend'] == AttentionBackend.FlashAttentionTriton and seq_length % 128 != 0:
logits = logits[:, :seq_length, :]
new_kv_cache = [[[cache[:, :seq_length, :] for cache in head] for head in layer] for layer in new_kv_cache]
return logits, new_kv_cache
@property
def device(self):
return next(self.parameters()).device
|