Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +21 -4
tasks/text.py
CHANGED
@@ -11,6 +11,7 @@ from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
from xgboost import XGBClassifier
|
13 |
import pickle
|
|
|
14 |
|
15 |
|
16 |
router = APIRouter()
|
@@ -61,10 +62,13 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
61 |
# YOUR MODEL INFERENCE CODE HERE
|
62 |
|
63 |
#Load the embedding model
|
64 |
-
model = SentenceTransformer("dunzhang/stella_en_400M_v5",trust_remote_code=True)
|
|
|
|
|
65 |
|
66 |
# Convert each sentence into a vector representation (embedding)
|
67 |
embeddings = model.encode(test_dataset['quote'].tolist())
|
|
|
68 |
|
69 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
70 |
#--------------------------------------------------------------------------------------------
|
@@ -74,11 +78,24 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
74 |
|
75 |
|
76 |
#load the xgboost model
|
77 |
-
with open("models/stella_400_xgb_500.pkl",'rb') as f:
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
#make inference
|
81 |
-
predictions = xgbclassifier.predict(embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
#--------------------------------------------------------------------------------------------
|
84 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
from xgboost import XGBClassifier
|
13 |
import pickle
|
14 |
+
import torch
|
15 |
|
16 |
|
17 |
router = APIRouter()
|
|
|
62 |
# YOUR MODEL INFERENCE CODE HERE
|
63 |
|
64 |
#Load the embedding model
|
65 |
+
#model = SentenceTransformer("dunzhang/stella_en_400M_v5",trust_remote_code=True)
|
66 |
+
model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" # You can use other Sentence Transformers models as needed
|
67 |
+
sentence_model = SentenceTransformer(model_name)
|
68 |
|
69 |
# Convert each sentence into a vector representation (embedding)
|
70 |
embeddings = model.encode(test_dataset['quote'].tolist())
|
71 |
+
embeddings = embeddings.cpu()
|
72 |
|
73 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
74 |
#--------------------------------------------------------------------------------------------
|
|
|
78 |
|
79 |
|
80 |
#load the xgboost model
|
81 |
+
#with open("models/stella_400_xgb_500.pkl",'rb') as f:
|
82 |
+
# xgbclassifier = pickle.load(f)
|
83 |
+
|
84 |
+
model_nn = torch.load("models/model_nn.pth")
|
85 |
+
|
86 |
+
# Set the model to evaluation mode
|
87 |
+
model_nn.eval()
|
88 |
|
89 |
#make inference
|
90 |
+
#predictions = xgbclassifier.predict(embeddings)
|
91 |
+
|
92 |
+
# Make predictions
|
93 |
+
with torch.no_grad():
|
94 |
+
outputs = model_nn(text_embeddings)
|
95 |
+
_, predicted = torch.max(outputs, 1) # Get the class with the highest score
|
96 |
+
|
97 |
+
# Decode the predictions back to original labels using label_encoder
|
98 |
+
predicted_labels = label_encoder.inverse_transform(predicted.cpu().numpy())
|
99 |
|
100 |
#--------------------------------------------------------------------------------------------
|
101 |
# YOUR MODEL INFERENCE STOPS HERE
|