File size: 3,784 Bytes
5416a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d39493
 
5416a13
5d39493
 
 
5416a13
 
 
 
5d39493
 
5416a13
 
 
5d39493
5416a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d39493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e6952
5d39493
 
 
 
 
 
 
 
 
5416a13
 
 
 
 
 
 
 
 
 
 
 
5d39493
5416a13
 
 
 
 
 
 
e1290f4
 
5416a13
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from PIL import Image
import gradio as gr
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
import torch

controlnet = ControlNetModel.from_pretrained("ioclab/control_v1p_sd15_brightness", torch_dtype=torch.float32, use_safetensors=True)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float32,
)

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

# pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()


def infer(prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed):

    conditioning_image = Image.fromarray(conditioning_image)
    conditioning_image = conditioning_image.convert('L')

    generator = torch.Generator(device="cpu").manual_seed(seed)

    output_image = pipe(
        prompt,
        conditioning_image,
        height=size,
        width=size,
        num_inference_steps=num_inference_steps,
        generator=generator,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        controlnet_conditioning_scale=1.0,
    ).images[0]

    return output_image

with gr.Blocks() as demo:
    gr.Markdown(
        """
    # ControlNet on Brightness

    This is a demo on ControlNet based on brightness.
    """)

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="Prompt",
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
            )
            conditioning_image = gr.Image(
                label="Conditioning Image",
            )
            with gr.Accordion('Advanced options', open=False):
                with gr.Row():
                    num_inference_steps = gr.Slider(
                        10, 40, 20,
                        step=1,
                        label="Steps",
                    )
                    size = gr.Slider(
                        256, 768, 512,
                        step=128,
                        label="Size",
                    )
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label='Guidance Scale',
                        minimum=0.1,
                        maximum=30.0,
                        value=9.0,
                        step=0.1
                    )
                    seed = gr.Slider(
                        label='Seed',
                        minimum=-1,
                        maximum=2147483647,
                        step=1,
                        randomize=True
                    )
            submit_btn = gr.Button(
                value="Submit",
                variant="primary"
            )
        with gr.Column(min_width=300):
            output = gr.Image(
                label="Result",
            )

    submit_btn.click(
        fn=infer,
        inputs=[
            prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed
        ],
        outputs=output
    )
    gr.Examples(
        examples=[
            ["a painting of a village in the mountains", "monochrome", "./conditioning_images/conditioning_image_1.jpg"],
            ["three people walking in an alleyway with hats and pants", "monochrome", "./conditioning_images/conditioning_image_2.jpg"],
            ["an anime character with blue hair", "monochrome", "./conditioning_images/conditioning_image_3.jpg"],
            ["white object standing on colored ground", "monochrome", "./conditioning_images/conditioning_image_4.jpg"],
        ],
        inputs=[
            prompt, negative_prompt, conditioning_image
        ],
    )

demo.launch()