Spaces:
Running
on
Zero
Running
on
Zero
Update clip_slider_pipeline.py
Browse files- clip_slider_pipeline.py +120 -39
clip_slider_pipeline.py
CHANGED
@@ -4,6 +4,66 @@ import random
|
|
4 |
from tqdm import tqdm
|
5 |
from constants import SUBJECTS, MEDIUMS
|
6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
class CLIPSlider:
|
9 |
def __init__(
|
@@ -49,9 +109,9 @@ class CLIPSlider:
|
|
49 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
50 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
51 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
52 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
53 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
54 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
55 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
56 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
57 |
positives.append(pos)
|
@@ -81,7 +141,7 @@ class CLIPSlider:
|
|
81 |
|
82 |
with torch.no_grad():
|
83 |
toks = self.pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True,
|
84 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
85 |
prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state
|
86 |
|
87 |
if self.avg_diff_2nd and normalize_scales:
|
@@ -163,18 +223,18 @@ class CLIPSliderXL(CLIPSlider):
|
|
163 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
164 |
|
165 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
166 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
167 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
168 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
169 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
170 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
171 |
positives.append(pos)
|
172 |
negatives.append(neg)
|
173 |
|
174 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
175 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
176 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
177 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
178 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
179 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
180 |
positives2.append(pos2)
|
@@ -207,7 +267,7 @@ class CLIPSliderXL(CLIPSlider):
|
|
207 |
text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
|
208 |
tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
|
209 |
with torch.no_grad():
|
210 |
-
# toks = pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=77).input_ids.
|
211 |
# prompt_embeds = pipe.text_encoder(toks).last_hidden_state
|
212 |
|
213 |
prompt_embeds_list = []
|
@@ -300,18 +360,18 @@ class CLIPSliderXL_inv(CLIPSlider):
|
|
300 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
301 |
|
302 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
303 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
304 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
305 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
306 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
307 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
308 |
positives.append(pos)
|
309 |
negatives.append(neg)
|
310 |
|
311 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
312 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
313 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
314 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
315 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
316 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
317 |
positives2.append(pos2)
|
@@ -377,14 +437,14 @@ class CLIPSliderFlux(CLIPSlider):
|
|
377 |
truncation=True,
|
378 |
return_overflowing_tokens=False,
|
379 |
return_length=False,
|
380 |
-
return_tensors="pt",).input_ids.
|
381 |
neg_toks = self.pipe.tokenizer(neg_prompt,
|
382 |
padding="max_length",
|
383 |
max_length=self.pipe.tokenizer_max_length,
|
384 |
truncation=True,
|
385 |
return_overflowing_tokens=False,
|
386 |
return_length=False,
|
387 |
-
return_tensors="pt",).input_ids.
|
388 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
389 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
390 |
positives.append(pos)
|
@@ -400,17 +460,22 @@ class CLIPSliderFlux(CLIPSlider):
|
|
400 |
|
401 |
def generate(self,
|
402 |
prompt = "a photo of a house",
|
403 |
-
scale = 2,
|
404 |
-
scale_2nd = 2,
|
405 |
seed = 15,
|
406 |
normalize_scales = False,
|
407 |
avg_diff = None,
|
408 |
-
avg_diff_2nd = None,
|
|
|
|
|
409 |
**pipeline_kwargs
|
410 |
):
|
411 |
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
|
412 |
# if pooler token only [-4,4] work well
|
413 |
|
|
|
|
|
|
|
|
|
414 |
with torch.no_grad():
|
415 |
text_inputs = self.pipe.tokenizer(
|
416 |
prompt,
|
@@ -423,15 +488,11 @@ class CLIPSliderFlux(CLIPSlider):
|
|
423 |
)
|
424 |
|
425 |
text_input_ids = text_inputs.input_ids
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
# Use pooled output of CLIPTextModel
|
433 |
-
|
434 |
-
text_inputs = self.pipe.tokenizer_2(
|
435 |
prompt,
|
436 |
padding="max_length",
|
437 |
max_length=512,
|
@@ -440,21 +501,40 @@ class CLIPSliderFlux(CLIPSlider):
|
|
440 |
return_overflowing_tokens=False,
|
441 |
return_tensors="pt",
|
442 |
)
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
|
452 |
-
pooled_prompt_embeds = pooled_prompt_embeds + avg_diff * scale
|
453 |
if avg_diff_2nd is not None:
|
454 |
-
|
|
|
455 |
|
456 |
torch.manual_seed(seed)
|
457 |
-
images = self.pipe(prompt_embeds=
|
|
|
458 |
**pipeline_kwargs).images
|
459 |
|
460 |
return images[0]
|
@@ -483,6 +563,7 @@ class CLIPSliderFlux(CLIPSlider):
|
|
483 |
canvas.paste(im, (640 * i, 0))
|
484 |
|
485 |
return canvas
|
|
|
486 |
class T5SliderFlux(CLIPSlider):
|
487 |
|
488 |
def find_latent_direction(self,
|
@@ -509,14 +590,14 @@ class T5SliderFlux(CLIPSlider):
|
|
509 |
truncation=True,
|
510 |
return_length=False,
|
511 |
return_overflowing_tokens=False,
|
512 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
513 |
neg_toks = self.pipe.tokenizer_2(neg_prompt,
|
514 |
return_tensors="pt",
|
515 |
padding="max_length",
|
516 |
truncation=True,
|
517 |
return_length=False,
|
518 |
return_overflowing_tokens=False,
|
519 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
520 |
pos = self.pipe.text_encoder_2(pos_toks, output_hidden_states=False)[0]
|
521 |
neg = self.pipe.text_encoder_2(neg_toks, output_hidden_states=False)[0]
|
522 |
positives.append(pos)
|
|
|
4 |
from tqdm import tqdm
|
5 |
from constants import SUBJECTS, MEDIUMS
|
6 |
from PIL import Image
|
7 |
+
import math # For acos, sin
|
8 |
+
|
9 |
+
# Slerp (Spherical Linear Interpolation) function
|
10 |
+
def slerp(v0, v1, t, DOT_THRESHOLD=0.9995):
|
11 |
+
"""
|
12 |
+
Spherical linear interpolation.
|
13 |
+
v0, v1: Tensors to interpolate between.
|
14 |
+
t: Interpolation factor (scalar or tensor).
|
15 |
+
DOT_THRESHOLD: Threshold for considering vectors collinear.
|
16 |
+
"""
|
17 |
+
if not isinstance(t, torch.Tensor):
|
18 |
+
t = torch.tensor(t, device=v0.device, dtype=v0.dtype)
|
19 |
+
|
20 |
+
# Dot product
|
21 |
+
dot = torch.sum(v0 * v1 / (torch.norm(v0, dim=-1, keepdim=True) * torch.norm(v1, dim=-1, keepdim=True) + 1e-8), dim=-1, keepdim=True)
|
22 |
+
|
23 |
+
# If vectors are too close, use linear interpolation (LERP)
|
24 |
+
# This also handles t=0 and t=1 correctly if dot is 1.
|
25 |
+
# Also, if dot is -1 (opposite), omega is pi.
|
26 |
+
if torch.any(torch.abs(dot) > DOT_THRESHOLD):
|
27 |
+
# For Slerp, if they are too close, omega is small, sin(omega) is small.
|
28 |
+
# Fallback to LERP for stability and when vectors are nearly collinear.
|
29 |
+
# However, the general Slerp formula handles this if dot is clamped.
|
30 |
+
# Let's use the standard formula but ensure stability.
|
31 |
+
pass # Continue to Slerp formula with clamping
|
32 |
+
|
33 |
+
# Clamp dot to prevent NaN from acos due to floating point errors.
|
34 |
+
dot = torch.clamp(dot, -1.0, 1.0)
|
35 |
+
omega = torch.acos(dot) # Angle between vectors
|
36 |
+
|
37 |
+
# Get magnitudes for later linear interpolation of magnitude
|
38 |
+
mag_v0 = torch.norm(v0, dim=-1, keepdim=True)
|
39 |
+
mag_v1 = torch.norm(v1, dim=-1, keepdim=True)
|
40 |
+
|
41 |
+
interpolated_mag = (1 - t) * mag_v0 + t * mag_v1
|
42 |
+
|
43 |
+
# Normalize v0 and v1 for pure Slerp on direction
|
44 |
+
v0_norm = v0 / (mag_v0 + 1e-8)
|
45 |
+
v1_norm = v1 / (mag_v1 + 1e-8)
|
46 |
+
|
47 |
+
# If sin_omega is very small, vectors are nearly collinear.
|
48 |
+
# LERP on normalized vectors is a good approximation.
|
49 |
+
# Then re-apply interpolated magnitude.
|
50 |
+
sin_omega = torch.sin(omega)
|
51 |
+
|
52 |
+
# Condition for LERP fallback (nearly collinear)
|
53 |
+
# Using a small epsilon for sin_omega
|
54 |
+
use_lerp_fallback = sin_omega.abs() < 1e-5
|
55 |
+
|
56 |
+
s0 = torch.sin((1 - t) * omega) / (sin_omega + 1e-8) # Add epsilon to sin_omega for stability
|
57 |
+
s1 = torch.sin(t * omega) / (sin_omega + 1e-8) # Add epsilon to sin_omega for stability
|
58 |
+
|
59 |
+
# For elements where LERP fallback is needed
|
60 |
+
s0[use_lerp_fallback] = 1.0 - t
|
61 |
+
s1[use_lerp_fallback] = t
|
62 |
+
|
63 |
+
result_norm = s0 * v0_norm + s1 * v1_norm
|
64 |
+
result = result_norm * interpolated_mag # Re-apply interpolated magnitude
|
65 |
+
|
66 |
+
return result.to(v0.dtype)
|
67 |
|
68 |
class CLIPSlider:
|
69 |
def __init__(
|
|
|
109 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
110 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
111 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
112 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
113 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
114 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
115 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
116 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
117 |
positives.append(pos)
|
|
|
141 |
|
142 |
with torch.no_grad():
|
143 |
toks = self.pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True,
|
144 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
145 |
prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state
|
146 |
|
147 |
if self.avg_diff_2nd and normalize_scales:
|
|
|
223 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
224 |
|
225 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
226 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
227 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
228 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
229 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
230 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
231 |
positives.append(pos)
|
232 |
negatives.append(neg)
|
233 |
|
234 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
235 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.to(self.device)
|
236 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
237 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.to(self.device)
|
238 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
239 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
240 |
positives2.append(pos2)
|
|
|
267 |
text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
|
268 |
tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
|
269 |
with torch.no_grad():
|
270 |
+
# toks = pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=77).input_ids.to(self.device)
|
271 |
# prompt_embeds = pipe.text_encoder(toks).last_hidden_state
|
272 |
|
273 |
prompt_embeds_list = []
|
|
|
360 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
361 |
|
362 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
363 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
364 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
365 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
366 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
367 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
368 |
positives.append(pos)
|
369 |
negatives.append(neg)
|
370 |
|
371 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
372 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.to(self.device)
|
373 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
374 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.to(self.device)
|
375 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
376 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
377 |
positives2.append(pos2)
|
|
|
437 |
truncation=True,
|
438 |
return_overflowing_tokens=False,
|
439 |
return_length=False,
|
440 |
+
return_tensors="pt",).input_ids.to(self.device)
|
441 |
neg_toks = self.pipe.tokenizer(neg_prompt,
|
442 |
padding="max_length",
|
443 |
max_length=self.pipe.tokenizer_max_length,
|
444 |
truncation=True,
|
445 |
return_overflowing_tokens=False,
|
446 |
return_length=False,
|
447 |
+
return_tensors="pt",).input_ids.to(self.device)
|
448 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
449 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
450 |
positives.append(pos)
|
|
|
460 |
|
461 |
def generate(self,
|
462 |
prompt = "a photo of a house",
|
463 |
+
scale = 2.0,
|
|
|
464 |
seed = 15,
|
465 |
normalize_scales = False,
|
466 |
avg_diff = None,
|
467 |
+
avg_diff_2nd = None,
|
468 |
+
use_slerp: bool = False,
|
469 |
+
max_strength_for_slerp_endpoint: float = 0.0,
|
470 |
**pipeline_kwargs
|
471 |
):
|
472 |
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
|
473 |
# if pooler token only [-4,4] work well
|
474 |
|
475 |
+
# Remove slider-specific kwargs before passing to the pipeline
|
476 |
+
pipeline_kwargs.pop('use_slerp', None)
|
477 |
+
pipeline_kwargs.pop('max_strength_for_slerp_endpoint', None)
|
478 |
+
|
479 |
with torch.no_grad():
|
480 |
text_inputs = self.pipe.tokenizer(
|
481 |
prompt,
|
|
|
488 |
)
|
489 |
|
490 |
text_input_ids = text_inputs.input_ids
|
491 |
+
prompt_embeds_out = self.pipe.text_encoder(text_input_ids.to(self.device), output_hidden_states=False)
|
492 |
+
original_pooled_prompt_embeds = prompt_embeds_out.pooler_output.to(dtype=self.pipe.text_encoder.dtype, device=self.device)
|
493 |
+
|
494 |
+
# For the second text encoder (T5-like for FLUX)
|
495 |
+
text_inputs_2 = self.pipe.tokenizer_2(
|
|
|
|
|
|
|
|
|
496 |
prompt,
|
497 |
padding="max_length",
|
498 |
max_length=512,
|
|
|
501 |
return_overflowing_tokens=False,
|
502 |
return_tensors="pt",
|
503 |
)
|
504 |
+
toks_2 = text_inputs_2.input_ids
|
505 |
+
# This is the non-pooled, sequence output for the second encoder
|
506 |
+
prompt_embeds_seq_2 = self.pipe.text_encoder_2(toks_2.to(self.device), output_hidden_states=False)[0]
|
507 |
+
prompt_embeds_seq_2 = prompt_embeds_seq_2.to(dtype=self.pipe.text_encoder_2.dtype, device=self.device)
|
508 |
+
|
509 |
+
modified_pooled_embeds = original_pooled_prompt_embeds.clone()
|
510 |
+
|
511 |
+
if avg_diff is not None:
|
512 |
+
if use_slerp and max_strength_for_slerp_endpoint != 0.0:
|
513 |
+
# Slerp logic
|
514 |
+
slerp_t_val = 0.0
|
515 |
+
if max_strength_for_slerp_endpoint != 0:
|
516 |
+
slerp_t_val = abs(scale) / max_strength_for_slerp_endpoint
|
517 |
+
slerp_t_val = min(slerp_t_val, 1.0)
|
518 |
+
|
519 |
+
if scale == 0:
|
520 |
+
pass
|
521 |
+
else:
|
522 |
+
v0 = original_pooled_prompt_embeds.float()
|
523 |
+
if scale > 0:
|
524 |
+
v_end_target = original_pooled_prompt_embeds + max_strength_for_slerp_endpoint * avg_diff
|
525 |
+
else:
|
526 |
+
v_end_target = original_pooled_prompt_embeds - max_strength_for_slerp_endpoint * avg_diff
|
527 |
+
modified_pooled_embeds = slerp(v0, v_end_target.float(), slerp_t_val).to(original_pooled_prompt_embeds.dtype)
|
528 |
+
else:
|
529 |
+
modified_pooled_embeds = modified_pooled_embeds + avg_diff * scale
|
530 |
|
|
|
531 |
if avg_diff_2nd is not None:
|
532 |
+
scale_2nd_val = pipeline_kwargs.get("scale_2nd", 0.0)
|
533 |
+
modified_pooled_embeds += avg_diff_2nd * scale_2nd_val
|
534 |
|
535 |
torch.manual_seed(seed)
|
536 |
+
images = self.pipe(prompt_embeds=prompt_embeds_seq_2,
|
537 |
+
pooled_prompt_embeds=modified_pooled_embeds,
|
538 |
**pipeline_kwargs).images
|
539 |
|
540 |
return images[0]
|
|
|
563 |
canvas.paste(im, (640 * i, 0))
|
564 |
|
565 |
return canvas
|
566 |
+
|
567 |
class T5SliderFlux(CLIPSlider):
|
568 |
|
569 |
def find_latent_direction(self,
|
|
|
590 |
truncation=True,
|
591 |
return_length=False,
|
592 |
return_overflowing_tokens=False,
|
593 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.to(self.device)
|
594 |
neg_toks = self.pipe.tokenizer_2(neg_prompt,
|
595 |
return_tensors="pt",
|
596 |
padding="max_length",
|
597 |
truncation=True,
|
598 |
return_length=False,
|
599 |
return_overflowing_tokens=False,
|
600 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.to(self.device)
|
601 |
pos = self.pipe.text_encoder_2(pos_toks, output_hidden_states=False)[0]
|
602 |
neg = self.pipe.text_encoder_2(neg_toks, output_hidden_states=False)[0]
|
603 |
positives.append(pos)
|