Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline | |
# Load the dataset | |
def load_data(): | |
return pd.read_csv("insurance_data.csv") | |
data = load_data() | |
# Load NLP model for intent detection | |
def load_nlp_model(): | |
return pipeline("text-classification", model="facebook/bart-large-mnli") | |
classifier = load_nlp_model() | |
# Streamlit UI | |
st.title("Health Insurance Coverage Assistant") | |
user_input = st.text_input("Enter your query (e.g., coverage for diabetes, best plans, etc.)") | |
if user_input: | |
# Detect intent | |
labels = ["coverage explanation", "plan recommendation"] | |
result = classifier(user_input, candidate_labels=labels) | |
intent = result["labels"][0] # Get the most likely intent | |
if intent == "coverage explanation": | |
st.subheader("Coverage Details") | |
condition_matches = data[data["Medical Condition"].str.contains(user_input, case=False, na=False)] | |
if not condition_matches.empty: | |
st.write(condition_matches) | |
else: | |
st.write("No specific coverage found for this condition.") | |
elif intent == "plan recommendation": | |
st.subheader("Recommended Plans") | |
recommended_plans = data.sort_values(by=["Coverage (%)"], ascending=False).head(5) | |
st.write(recommended_plans) | |
else: | |
st.write("Sorry, I couldn't understand your request. Please try again!") | |