Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,532 +1,421 @@
|
|
1 |
import os
|
2 |
import logging
|
3 |
import asyncio
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
import gradio as gr
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
#
|
13 |
logging.basicConfig(
|
14 |
level=logging.INFO,
|
15 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
16 |
)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
-
# Environment variable validation
|
20 |
-
required_env_vars = ["SHODAN_API_KEY", "ADMIN_PASSWORD", "SHODAN_QUERY"]
|
21 |
-
for var in required_env_vars:
|
22 |
-
if not os.environ.get(var):
|
23 |
-
logger.warning(f"Environment variable {var} is not set")
|
24 |
|
25 |
-
|
26 |
-
def get_or_create_dataset(dataset_name: str = "latterworks/llama_checker_results") -> Optional[Dataset]:
|
27 |
"""
|
28 |
-
Load
|
29 |
|
30 |
-
Args:
|
31 |
-
dataset_name: The name of the dataset on Hugging Face Hub
|
32 |
-
|
33 |
Returns:
|
34 |
-
|
35 |
"""
|
|
|
|
|
|
|
|
|
36 |
try:
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
# If no "train" split, try to use the first available split
|
46 |
-
first_split = next(iter(dataset_dict))
|
47 |
-
return dataset_dict[first_split]
|
48 |
-
except Exception as e:
|
49 |
-
logger.error(f"Failed to load dataset {dataset_name}: {e}")
|
50 |
-
|
51 |
-
# Create the dataset
|
52 |
-
try:
|
53 |
-
# Create the repository
|
54 |
-
hf_api = HfApi(token=token)
|
55 |
-
create_repo(repo_id=dataset_name, repo_type="dataset", token=token)
|
56 |
-
|
57 |
-
# Create empty dataset with the correct schema
|
58 |
-
empty_dataset = Dataset.from_dict({
|
59 |
-
"ip": [],
|
60 |
-
"port": [],
|
61 |
-
"country": [],
|
62 |
-
"region": [],
|
63 |
-
"org": [],
|
64 |
-
"models": []
|
65 |
-
})
|
66 |
-
|
67 |
-
# Push to Hub
|
68 |
-
empty_dataset.push_to_hub(dataset_name, token=token)
|
69 |
-
|
70 |
-
return empty_dataset
|
71 |
-
except Exception as create_e:
|
72 |
-
logger.error(f"Failed to create dataset: {create_e}")
|
73 |
-
return None
|
74 |
except Exception as e:
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
77 |
|
78 |
-
def
|
79 |
"""
|
80 |
-
|
81 |
|
82 |
Args:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
Returns:
|
87 |
-
|
88 |
"""
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
#
|
94 |
-
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
#
|
102 |
-
|
103 |
-
for i, (existing_ip, existing_port) in enumerate(zip(dataset_dict["ip"], dataset_dict["port"])):
|
104 |
-
if existing_ip == ip and existing_port == port:
|
105 |
-
# Update the entry
|
106 |
-
dataset_dict["country"][i] = entry.get("country", dataset_dict["country"][i])
|
107 |
-
dataset_dict["region"][i] = entry.get("region", dataset_dict["region"][i])
|
108 |
-
dataset_dict["org"][i] = entry.get("org", dataset_dict["org"][i])
|
109 |
-
dataset_dict["models"][i] = entry.get("models", dataset_dict["models"][i])
|
110 |
-
found = True
|
111 |
-
break
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
updated_dataset.push_to_hub("latterworks/llama_checker_results", token=token)
|
128 |
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
|
132 |
-
async def check_ollama_endpoint(ip: str, port: int) -> Dict[str, Any]:
|
133 |
"""
|
134 |
-
Check a single Ollama endpoint
|
135 |
|
136 |
Args:
|
137 |
-
ip:
|
138 |
-
port:
|
139 |
-
|
140 |
Returns:
|
141 |
-
|
142 |
"""
|
143 |
url = f"http://{ip}:{port}/api/tags"
|
144 |
-
models = []
|
145 |
-
status = "success"
|
146 |
|
147 |
try:
|
|
|
148 |
response = requests.get(url, timeout=5)
|
149 |
-
response.
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
model_info = {
|
156 |
-
"name": model_data.get("name", ""),
|
157 |
-
"family": details.get("family", ""),
|
158 |
-
"parameter_size": details.get("parameter_size", ""),
|
159 |
-
"quantization_level": details.get("quantization_level", ""),
|
160 |
-
"digest": model_data.get("digest", ""),
|
161 |
-
"modified_at": model_data.get("modified_at", ""),
|
162 |
-
"size": model_data.get("size", 0)
|
163 |
-
}
|
164 |
-
models.append(model_info)
|
165 |
except requests.exceptions.RequestException as e:
|
166 |
-
logger.
|
167 |
-
|
168 |
-
except ValueError as e:
|
169 |
-
logger.error(f"Invalid JSON from {ip}:{port}: {e}")
|
170 |
-
status = "invalid json"
|
171 |
except Exception as e:
|
172 |
-
logger.
|
173 |
-
|
174 |
-
|
175 |
-
return {
|
176 |
-
"ip": ip,
|
177 |
-
"port": port,
|
178 |
-
"models": models,
|
179 |
-
"status": status
|
180 |
-
}
|
181 |
|
182 |
-
|
|
|
183 |
"""
|
184 |
-
Check
|
185 |
|
186 |
Args:
|
187 |
-
|
|
|
|
|
188 |
|
189 |
Returns:
|
190 |
-
|
191 |
-
"""
|
192 |
-
tasks = []
|
193 |
-
for entry in entries:
|
194 |
-
task = asyncio.create_task(check_ollama_endpoint(entry["ip"], entry["port"]))
|
195 |
-
tasks.append((entry, task))
|
196 |
-
|
197 |
-
results = []
|
198 |
-
for entry, task in tasks:
|
199 |
-
try:
|
200 |
-
result = await task
|
201 |
-
# Merge the result with the original entry
|
202 |
-
# This preserves fields like country, region, and org
|
203 |
-
updated_entry = entry.copy()
|
204 |
-
updated_entry["models"] = result["models"]
|
205 |
-
updated_entry["status"] = result["status"]
|
206 |
-
results.append(updated_entry)
|
207 |
-
except Exception as e:
|
208 |
-
logger.error(f"Error checking endpoint {entry.get('ip')}:{entry.get('port')}: {e}")
|
209 |
-
entry["models"] = []
|
210 |
-
entry["status"] = "error"
|
211 |
-
results.append(entry)
|
212 |
-
|
213 |
-
return results
|
214 |
-
|
215 |
-
# Shodan scanning
|
216 |
-
def run_shodan_scan() -> List[Dict[str, Any]]:
|
217 |
-
"""
|
218 |
-
Run a Shodan scan for Ollama instances.
|
219 |
-
|
220 |
-
Returns:
|
221 |
-
List of entries containing IP, port, and location information
|
222 |
"""
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
"ip": result.get("ip_str", ""),
|
238 |
-
"port": result.get("port", 0),
|
239 |
-
"country": result.get("location", {}).get("country_name", ""),
|
240 |
-
"region": result.get("location", {}).get("region_name", ""),
|
241 |
-
"org": result.get("org", ""),
|
242 |
-
"models": []
|
243 |
-
}
|
244 |
-
entries.append(entry)
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
logger.error(f"Shodan API error: {e}")
|
249 |
-
return []
|
250 |
-
except Exception as e:
|
251 |
-
logger.exception(f"Unexpected error in run_shodan_scan")
|
252 |
-
return []
|
253 |
-
|
254 |
-
# Password validation
|
255 |
-
def validate_admin_password(password: str) -> bool:
|
256 |
-
"""
|
257 |
-
Validate the admin password.
|
258 |
-
|
259 |
-
Args:
|
260 |
-
password: The entered password to validate
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
-
|
278 |
-
def get_model_families_and_sizes(dataset: Dataset) -> Tuple[List[str], List[str]]:
|
279 |
"""
|
280 |
-
|
281 |
|
282 |
Args:
|
283 |
-
dataset:
|
284 |
-
|
285 |
Returns:
|
286 |
-
Tuple of
|
287 |
"""
|
288 |
-
if dataset is None:
|
289 |
-
return [], []
|
290 |
-
|
291 |
families = set()
|
292 |
parameter_sizes = set()
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
|
|
|
|
|
|
307 |
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
"""
|
310 |
-
Search
|
311 |
|
312 |
Args:
|
|
|
313 |
family: Filter by model family
|
314 |
parameter_size: Filter by parameter size
|
315 |
name: Filter by model name
|
316 |
-
dataset: The dataset to search in
|
317 |
is_admin: Whether the user is an admin
|
318 |
-
|
319 |
Returns:
|
320 |
-
Tuple of (
|
321 |
"""
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
if name:
|
356 |
-
filtered_models = [m for m in filtered_models if name.lower() in m.get("name", "").lower()]
|
357 |
-
|
358 |
-
return filtered_models, {}
|
359 |
|
360 |
-
def
|
361 |
"""
|
362 |
-
|
363 |
|
364 |
Args:
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
Returns:
|
369 |
-
|
370 |
"""
|
371 |
-
|
372 |
-
return {}
|
373 |
-
|
374 |
-
return models[evt.index]
|
375 |
|
376 |
-
|
|
|
377 |
"""
|
378 |
-
|
379 |
|
380 |
Returns:
|
381 |
-
|
382 |
"""
|
383 |
-
#
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
def create_app():
|
401 |
-
# Load the dataset
|
402 |
-
dataset = get_or_create_dataset()
|
403 |
-
|
404 |
-
# Get model families and parameter sizes
|
405 |
-
families, parameter_sizes = [], []
|
406 |
-
if dataset is not None:
|
407 |
-
families, parameter_sizes = get_model_families_and_sizes(dataset)
|
408 |
-
|
409 |
-
with gr.Blocks(title="Ollama Instance Explorer") as app:
|
410 |
-
# Admin login section
|
411 |
-
with gr.Row():
|
412 |
-
admin_password = gr.Textbox(
|
413 |
-
label="Admin Password",
|
414 |
-
type="password",
|
415 |
-
placeholder="Enter admin password"
|
416 |
-
)
|
417 |
-
login_button = gr.Button("Login")
|
418 |
-
login_status = gr.Textbox(
|
419 |
-
label="Login Status",
|
420 |
-
value="",
|
421 |
-
interactive=False
|
422 |
-
)
|
423 |
|
424 |
-
#
|
425 |
-
|
426 |
|
427 |
-
#
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
|
|
449 |
|
450 |
-
|
451 |
-
|
452 |
-
with gr.
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
)
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
)
|
463 |
-
|
464 |
-
|
465 |
-
|
|
|
|
|
|
|
466 |
)
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
headers=["name", "family", "parameter_size", "quantization_level", "size_gb"],
|
473 |
-
datatype=["str", "str", "str", "str", "number"],
|
474 |
-
interactive=False
|
475 |
)
|
476 |
-
model_details = gr.JSON(label="Model Details")
|
477 |
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
df_data = []
|
483 |
-
for model in models:
|
484 |
-
row = {
|
485 |
-
"name": model.get("name", ""),
|
486 |
-
"family": model.get("family", ""),
|
487 |
-
"parameter_size": model.get("parameter_size", ""),
|
488 |
-
"quantization_level": model.get("quantization_level", ""),
|
489 |
-
"size_gb": model.get("size_gb", 0)
|
490 |
-
}
|
491 |
-
df_data.append(row)
|
492 |
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
else:
|
512 |
-
return False, gr.update(visible=False), "Invalid password"
|
513 |
-
|
514 |
-
login_button.click(
|
515 |
-
on_login,
|
516 |
-
inputs=[admin_password],
|
517 |
-
outputs=[is_admin, admin_tab, login_status]
|
518 |
-
)
|
519 |
-
|
520 |
-
# Initial search on load
|
521 |
-
app.load(
|
522 |
-
lambda: on_search("", "", "", False),
|
523 |
-
inputs=None,
|
524 |
-
outputs=[models_table, model_details]
|
525 |
-
)
|
526 |
|
527 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
|
529 |
-
# Run the app
|
530 |
if __name__ == "__main__":
|
531 |
-
|
532 |
-
app.launch()
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
import asyncio
|
4 |
+
import time
|
5 |
+
from typing import Dict, List, Optional, Any, Tuple
|
6 |
+
|
7 |
import gradio as gr
|
8 |
+
import datasets
|
9 |
+
import shodan
|
10 |
+
import requests
|
11 |
|
12 |
+
# Set up logging
|
13 |
logging.basicConfig(
|
14 |
level=logging.INFO,
|
15 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
16 |
)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
def load_or_create_dataset():
|
|
|
21 |
"""
|
22 |
+
Load or create the dataset.
|
23 |
|
|
|
|
|
|
|
24 |
Returns:
|
25 |
+
HuggingFace dataset
|
26 |
"""
|
27 |
+
hf_token = os.getenv("HF_TOKEN")
|
28 |
+
if not hf_token:
|
29 |
+
raise ValueError("HF_TOKEN environment variable is not set")
|
30 |
+
|
31 |
try:
|
32 |
+
dataset = datasets.load_dataset("latterworks/llama_checker_results", use_auth_token=hf_token)
|
33 |
+
# Convert to in-memory dataset for easier manipulation
|
34 |
+
dataset = dataset['train']
|
35 |
+
except FileNotFoundError:
|
36 |
+
# Dataset doesn't exist, create it
|
37 |
+
dataset = datasets.Dataset.from_dict({"ip": [], "port": [], "country": [], "region": [], "org": [], "models": []})
|
38 |
+
dataset.push_to_hub("latterworks/llama_checker_results", token=hf_token)
|
39 |
+
dataset = datasets.load_dataset("latterworks/llama_checker_results", use_auth_token=hf_token)['train']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
except Exception as e:
|
41 |
+
logging.error(f"Failed to load or create dataset: {e}")
|
42 |
+
raise # Re-raise the exception to stop the application
|
43 |
+
|
44 |
+
return dataset
|
45 |
+
|
46 |
|
47 |
+
def scan_shodan(progress=gr.Progress()) -> List[Dict]:
|
48 |
"""
|
49 |
+
Scan Shodan for Ollama instances.
|
50 |
|
51 |
Args:
|
52 |
+
progress: Gradio progress bar
|
53 |
+
|
|
|
54 |
Returns:
|
55 |
+
List of dictionaries containing information about Ollama instances
|
56 |
"""
|
57 |
+
# Validate Shodan API key exists
|
58 |
+
shodan_api_key = os.getenv("SHODAN_API_KEY")
|
59 |
+
if not shodan_api_key:
|
60 |
+
raise ValueError("SHODAN_API_KEY environment variable is not set")
|
61 |
+
|
62 |
+
# Get Shodan query
|
63 |
+
shodan_query = os.getenv("SHODAN_QUERY", "product:Ollama port:11434")
|
64 |
|
65 |
+
# Initialize Shodan API
|
66 |
+
api = shodan.Shodan(shodan_api_key)
|
67 |
|
68 |
+
try:
|
69 |
+
# Search Shodan
|
70 |
+
logger.info(f"Searching Shodan with query: {shodan_query}")
|
71 |
+
results = api.search(shodan_query)
|
72 |
+
|
73 |
+
# Process results
|
74 |
+
instances = []
|
75 |
+
total_results = results['total']
|
76 |
+
logger.info(f"Found {total_results} results")
|
77 |
|
78 |
+
# Set up progress bar
|
79 |
+
progress(0, desc="Scanning Shodan for Ollama instances")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
for i, result in enumerate(results['matches']):
|
82 |
+
progress((i+1)/len(results['matches']), desc=f"Processing result {i+1}/{len(results['matches'])}")
|
83 |
+
|
84 |
+
instance = {
|
85 |
+
'ip': result['ip_str'],
|
86 |
+
'port': result.get('port', 11434),
|
87 |
+
'country': result.get('location', {}).get('country_name'),
|
88 |
+
'region': result.get('location', {}).get('region_name'),
|
89 |
+
'org': result.get('org'),
|
90 |
+
'models': []
|
91 |
+
}
|
92 |
+
instances.append(instance)
|
93 |
+
|
94 |
+
return instances
|
|
|
95 |
|
96 |
+
except shodan.APIError as e:
|
97 |
+
logger.error(f"Shodan API error: {e}")
|
98 |
+
raise
|
99 |
+
except Exception as e:
|
100 |
+
logger.error(f"Error during Shodan scan: {e}")
|
101 |
+
raise
|
102 |
+
|
103 |
|
104 |
+
async def check_single_endpoint(ip: str, port: int) -> Optional[List[Dict]]:
|
|
|
105 |
"""
|
106 |
+
Check a single Ollama endpoint for available models.
|
107 |
|
108 |
Args:
|
109 |
+
ip: IP address of the endpoint
|
110 |
+
port: Port number of the endpoint
|
111 |
+
|
112 |
Returns:
|
113 |
+
List of models if successful, None otherwise
|
114 |
"""
|
115 |
url = f"http://{ip}:{port}/api/tags"
|
|
|
|
|
116 |
|
117 |
try:
|
118 |
+
# Set a timeout of 5 seconds
|
119 |
response = requests.get(url, timeout=5)
|
120 |
+
if response.status_code == 200:
|
121 |
+
data = response.json()
|
122 |
+
return data.get('models', [])
|
123 |
+
else:
|
124 |
+
logger.warning(f"Failed to get models from {ip}:{port}, status code: {response.status_code}")
|
125 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
except requests.exceptions.RequestException as e:
|
127 |
+
logger.warning(f"Error connecting to {ip}:{port}: {e}")
|
128 |
+
return None
|
|
|
|
|
|
|
129 |
except Exception as e:
|
130 |
+
logger.warning(f"Unexpected error checking {ip}:{port}: {e}")
|
131 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
|
134 |
+
async def check_ollama_endpoints(instances: List[Dict], dataset, progress=gr.Progress()) -> datasets.Dataset:
|
135 |
"""
|
136 |
+
Check all Ollama endpoints for available models asynchronously.
|
137 |
|
138 |
Args:
|
139 |
+
instances: List of dictionaries containing information about Ollama instances
|
140 |
+
dataset: HuggingFace dataset
|
141 |
+
progress: Gradio progress bar
|
142 |
|
143 |
Returns:
|
144 |
+
Updated dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
"""
|
146 |
+
# Validate HF token exists
|
147 |
+
hf_token = os.getenv("HF_TOKEN")
|
148 |
+
if not hf_token:
|
149 |
+
raise ValueError("HF_TOKEN environment variable is not set")
|
150 |
+
|
151 |
+
# Convert dataset to dictionary for easier manipulation
|
152 |
+
dataset_dict = {f"{item['ip']}:{item['port']}": item for item in dataset}
|
153 |
+
|
154 |
+
# Process each instance
|
155 |
+
progress(0, desc="Checking Ollama endpoints")
|
156 |
+
for i, instance in enumerate(instances):
|
157 |
+
progress((i+1)/len(instances), desc=f"Checking endpoint {i+1}/{len(instances)}")
|
158 |
|
159 |
+
ip = instance['ip']
|
160 |
+
port = instance['port']
|
161 |
+
key = f"{ip}:{port}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
# Get models from the endpoint
|
164 |
+
models = await check_single_endpoint(ip, port)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
if models:
|
167 |
+
# Update instance with models
|
168 |
+
instance['models'] = models
|
169 |
+
|
170 |
+
# Update or add to dataset dictionary
|
171 |
+
dataset_dict[key] = instance
|
172 |
+
|
173 |
+
# Convert back to dataset
|
174 |
+
updated_dataset = datasets.Dataset.from_dict({
|
175 |
+
"ip": [item['ip'] for item in dataset_dict.values()],
|
176 |
+
"port": [item['port'] for item in dataset_dict.values()],
|
177 |
+
"country": [item.get('country', '') for item in dataset_dict.values()],
|
178 |
+
"region": [item.get('region', '') for item in dataset_dict.values()],
|
179 |
+
"org": [item.get('org', '') for item in dataset_dict.values()],
|
180 |
+
"models": [item.get('models', []) for item in dataset_dict.values()]
|
181 |
+
})
|
182 |
+
|
183 |
+
# Push updates to hub
|
184 |
+
updated_dataset.push_to_hub("latterworks/llama_checker_results", token=hf_token)
|
185 |
+
|
186 |
+
return updated_dataset
|
187 |
+
|
188 |
|
189 |
+
def get_unique_values(dataset) -> Tuple[List[str], List[str], List[str]]:
|
|
|
190 |
"""
|
191 |
+
Get unique values for family, parameter_size, and name.
|
192 |
|
193 |
Args:
|
194 |
+
dataset: HuggingFace dataset
|
195 |
+
|
196 |
Returns:
|
197 |
+
Tuple of lists containing unique values for family, parameter_size, and name
|
198 |
"""
|
|
|
|
|
|
|
199 |
families = set()
|
200 |
parameter_sizes = set()
|
201 |
+
names = set()
|
202 |
+
|
203 |
+
for item in dataset:
|
204 |
+
for model in item.get('models', []):
|
205 |
+
if 'family' in model and model['family']:
|
206 |
+
families.add(model['family'])
|
207 |
+
if 'parameter_size' in model and model['parameter_size']:
|
208 |
+
parameter_sizes.add(model['parameter_size'])
|
209 |
+
if 'name' in model and model['name']:
|
210 |
+
names.add(model['name'])
|
211 |
+
|
212 |
+
# Convert to sorted lists and add empty option
|
213 |
+
families = [''] + sorted(list(families))
|
214 |
+
parameter_sizes = [''] + sorted(list(parameter_sizes))
|
215 |
+
names = sorted(list(names))
|
216 |
+
|
217 |
+
return families, parameter_sizes, names
|
218 |
|
219 |
+
|
220 |
+
def search_models(
|
221 |
+
dataset,
|
222 |
+
family: str = "",
|
223 |
+
parameter_size: str = "",
|
224 |
+
name: str = "",
|
225 |
+
is_admin: bool = False
|
226 |
+
) -> Tuple[List[Dict], List[Dict]]:
|
227 |
"""
|
228 |
+
Search models based on criteria.
|
229 |
|
230 |
Args:
|
231 |
+
dataset: HuggingFace dataset
|
232 |
family: Filter by model family
|
233 |
parameter_size: Filter by parameter size
|
234 |
name: Filter by model name
|
|
|
235 |
is_admin: Whether the user is an admin
|
236 |
+
|
237 |
Returns:
|
238 |
+
Tuple of (results, selected model info)
|
239 |
"""
|
240 |
+
results = []
|
241 |
+
|
242 |
+
for item in dataset:
|
243 |
+
for model in item.get('models', []):
|
244 |
+
# Apply filters
|
245 |
+
if family and model.get('family', '') != family:
|
246 |
+
continue
|
247 |
+
if parameter_size and model.get('parameter_size', '') != parameter_size:
|
248 |
+
continue
|
249 |
+
if name and name.lower() not in model.get('name', '').lower():
|
250 |
+
continue
|
251 |
+
|
252 |
+
# Create result with model info
|
253 |
+
result = {
|
254 |
+
'name': model.get('name', ''),
|
255 |
+
'family': model.get('family', ''),
|
256 |
+
'parameter_size': model.get('parameter_size', ''),
|
257 |
+
'quantization_level': model.get('quantization_level', ''),
|
258 |
+
'size': round(model.get('size', 0) / (1024**3), 2) # Convert to GB
|
259 |
+
}
|
260 |
+
|
261 |
+
# Add IP and port only for admin users
|
262 |
+
if is_admin:
|
263 |
+
result['ip'] = item['ip']
|
264 |
+
result['port'] = item['port']
|
265 |
+
|
266 |
+
results.append(result)
|
267 |
+
|
268 |
+
# For empty result, return empty JSON info
|
269 |
+
selected_model_info = [{}]
|
270 |
+
|
271 |
+
return results, selected_model_info
|
272 |
+
|
|
|
|
|
|
|
|
|
273 |
|
274 |
+
def get_model_info(model_row: Dict) -> Dict:
|
275 |
"""
|
276 |
+
Get detailed information about a selected model.
|
277 |
|
278 |
Args:
|
279 |
+
model_row: Selected model row from the results
|
280 |
+
|
|
|
281 |
Returns:
|
282 |
+
Dictionary containing detailed model information
|
283 |
"""
|
284 |
+
return model_row
|
|
|
|
|
|
|
285 |
|
286 |
+
|
287 |
+
def create_interface():
|
288 |
"""
|
289 |
+
Create Gradio interface for the application.
|
290 |
|
291 |
Returns:
|
292 |
+
Gradio interface
|
293 |
"""
|
294 |
+
# Load or create dataset
|
295 |
+
dataset = load_or_create_dataset()
|
296 |
+
|
297 |
+
# Check for admin mode
|
298 |
+
is_admin = os.getenv("ADMIN_MODE", "false").lower() == "true"
|
299 |
+
|
300 |
+
# Get unique values for dropdown menus
|
301 |
+
families, parameter_sizes, names = get_unique_values(dataset)
|
302 |
+
|
303 |
+
# Get initial search results
|
304 |
+
initial_results, initial_model_info = search_models(dataset, is_admin=is_admin)
|
305 |
+
|
306 |
+
# Function to run Shodan scan
|
307 |
+
def run_shodan_scan(progress=gr.Progress()):
|
308 |
+
nonlocal dataset
|
309 |
+
instances = scan_shodan(progress)
|
310 |
+
dataset = asyncio.run(check_ollama_endpoints(instances, dataset, progress))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
+
# Update unique values
|
313 |
+
updated_families, updated_parameter_sizes, updated_names = get_unique_values(dataset)
|
314 |
|
315 |
+
# Update search results
|
316 |
+
updated_results, updated_model_info = search_models(dataset, is_admin=is_admin)
|
317 |
+
|
318 |
+
return (
|
319 |
+
updated_families, updated_parameter_sizes,
|
320 |
+
updated_results, updated_model_info
|
321 |
+
)
|
322 |
+
|
323 |
+
# Function to run model search
|
324 |
+
def run_search(family, parameter_size, name):
|
325 |
+
results, model_info = search_models(dataset, family, parameter_size, name, is_admin=is_admin)
|
326 |
+
return results, model_info
|
327 |
+
|
328 |
+
# Function to get model details when a row is selected
|
329 |
+
def select_model(evt: gr.SelectData, results):
|
330 |
+
if evt.index[0] < len(results):
|
331 |
+
selected = results[evt.index[0]]
|
332 |
+
return selected
|
333 |
+
return {}
|
334 |
+
|
335 |
+
# Create Gradio interface
|
336 |
+
with gr.Blocks(title="Ollama Instance Scanner") as interface:
|
337 |
+
gr.Markdown("# Ollama Instance Scanner")
|
338 |
|
339 |
+
with gr.Tabs():
|
340 |
+
# Browse Models tab
|
341 |
+
with gr.TabItem("Browse Models"):
|
342 |
+
with gr.Row():
|
343 |
+
with gr.Column():
|
344 |
+
family_dropdown = gr.Dropdown(
|
345 |
+
choices=families,
|
346 |
+
label="Model Family",
|
347 |
+
value=""
|
348 |
+
)
|
349 |
+
parameter_size_dropdown = gr.Dropdown(
|
350 |
+
choices=parameter_sizes,
|
351 |
+
label="Parameter Size",
|
352 |
+
value=""
|
353 |
+
)
|
354 |
+
name_search = gr.Textbox(
|
355 |
+
label="Model Name",
|
356 |
+
placeholder="Search by name..."
|
357 |
+
)
|
358 |
+
search_button = gr.Button("Search")
|
359 |
+
|
360 |
+
results_df = gr.DataFrame(
|
361 |
+
value=initial_results,
|
362 |
+
label="Search Results",
|
363 |
+
headers=["name", "family", "parameter_size", "quantization_level", "size"],
|
364 |
+
row_count=10,
|
365 |
+
interactive=False
|
366 |
)
|
367 |
+
|
368 |
+
model_info = gr.JSON(
|
369 |
+
value=initial_model_info[0] if initial_model_info else {},
|
370 |
+
label="Model Details"
|
371 |
)
|
372 |
+
|
373 |
+
# Event handlers
|
374 |
+
search_button.click(
|
375 |
+
fn=run_search,
|
376 |
+
inputs=[family_dropdown, parameter_size_dropdown, name_search],
|
377 |
+
outputs=[results_df, model_info]
|
378 |
)
|
379 |
+
|
380 |
+
results_df.select(
|
381 |
+
fn=select_model,
|
382 |
+
inputs=[results_df],
|
383 |
+
outputs=[model_info]
|
|
|
|
|
|
|
384 |
)
|
|
|
385 |
|
386 |
+
# Shodan Scan tab
|
387 |
+
with gr.TabItem("Shodan Scan"):
|
388 |
+
# Check if Shodan API key is available
|
389 |
+
shodan_api_key = os.getenv("SHODAN_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
|
391 |
+
if shodan_api_key:
|
392 |
+
scan_button = gr.Button("Start Scan")
|
393 |
+
scan_output = gr.Markdown("Press the button to start scanning Shodan for Ollama instances.")
|
394 |
+
|
395 |
+
# Event handlers
|
396 |
+
scan_button.click(
|
397 |
+
fn=run_shodan_scan,
|
398 |
+
outputs=[
|
399 |
+
family_dropdown, parameter_size_dropdown,
|
400 |
+
results_df, model_info
|
401 |
+
]
|
402 |
+
)
|
403 |
+
else:
|
404 |
+
gr.Markdown("## Shodan API key not configured")
|
405 |
+
gr.Markdown(
|
406 |
+
"To use the Shodan scan feature, you need to set the `SHODAN_API_KEY` "
|
407 |
+
"environment variable in your Hugging Face Space settings."
|
408 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
+
return interface
|
411 |
+
|
412 |
+
|
413 |
+
def main():
|
414 |
+
"""Main function to run the application."""
|
415 |
+
# Create and launch interface
|
416 |
+
interface = create_interface()
|
417 |
+
interface.launch()
|
418 |
+
|
419 |
|
|
|
420 |
if __name__ == "__main__":
|
421 |
+
main()
|
|