Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,10 @@ import os
|
|
6 |
import logging
|
7 |
import time
|
8 |
from datasets import Dataset
|
9 |
-
from huggingface_hub import HfApi
|
|
|
|
|
|
|
10 |
|
11 |
# Setup logging with timestamp
|
12 |
logging.basicConfig(
|
@@ -19,21 +22,168 @@ logging.basicConfig(
|
|
19 |
)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
-
# Constants -
|
23 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
24 |
-
HF_USERNAME = "latterworks"
|
25 |
-
DATASET_NAME = "geo-metadata"
|
26 |
SUPPORTED_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.heic', '.tiff', '.bmp', '.webp'}
|
|
|
27 |
|
28 |
-
#
|
29 |
STATS = {
|
30 |
"uploads": 0,
|
31 |
"total_files": 0,
|
32 |
-
"files_with_gps": 0
|
|
|
|
|
33 |
}
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def convert_to_degrees(value):
|
36 |
-
"""Convert GPS coordinates to decimal degrees
|
37 |
try:
|
38 |
if not isinstance(value, (tuple, list)) or len(value) != 3:
|
39 |
raise ValueError(f"GPS needs 3 values, got {type(value)}")
|
@@ -109,7 +259,13 @@ def make_serializable(value):
|
|
109 |
|
110 |
def get_image_metadata(image_path):
|
111 |
"""Extract all metadata from an image file"""
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
try:
|
114 |
with Image.open(image_path) as image:
|
115 |
metadata.update({
|
@@ -140,7 +296,7 @@ def get_image_metadata(image_path):
|
|
140 |
|
141 |
# Add file details
|
142 |
metadata["file_size"] = os.path.getsize(image_path)
|
143 |
-
metadata["file_extension"] =
|
144 |
metadata["extraction_timestamp"] = int(time.time())
|
145 |
|
146 |
# Test serialization
|
@@ -148,12 +304,19 @@ def get_image_metadata(image_path):
|
|
148 |
return metadata
|
149 |
except Exception as e:
|
150 |
logger.error(f"Error processing {image_path}: {e}")
|
151 |
-
return {"file_name": str(
|
152 |
|
153 |
def process_images(image_files):
|
154 |
"""Process images and upload metadata to Hugging Face"""
|
155 |
if not image_files:
|
156 |
return "π« Upload some fucking images first! π·", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
# Reset stats for this batch
|
159 |
batch_stats = {
|
@@ -216,6 +379,7 @@ def process_images(image_files):
|
|
216 |
# Create dataset object with both filenames and full metadata
|
217 |
dataset = Dataset.from_dict({
|
218 |
"filename": filenames,
|
|
|
219 |
"metadata": metadata_list
|
220 |
})
|
221 |
|
@@ -227,7 +391,7 @@ def process_images(image_files):
|
|
227 |
)
|
228 |
|
229 |
# Upload raw JSONL file
|
230 |
-
api = HfApi()
|
231 |
api.upload_file(
|
232 |
path_or_fileobj=output_file,
|
233 |
path_in_repo=f"batches/metadata_{timestamp}.jsonl",
|
@@ -237,8 +401,63 @@ def process_images(image_files):
|
|
237 |
commit_message=f"Raw metadata batch {timestamp}"
|
238 |
)
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
STATS["uploads"] += 1
|
|
|
241 |
upload_status = "β
success"
|
|
|
|
|
|
|
|
|
242 |
except Exception as e:
|
243 |
logger.error(f"HF upload failed: {e}")
|
244 |
upload_status = f"β failed: {str(e)[:100]}..."
|
@@ -254,12 +473,53 @@ def process_images(image_files):
|
|
254 |
f"π TOTAL STATS π\n"
|
255 |
f"Total files: {STATS['total_files']}\n"
|
256 |
f"Files with GPS: {STATS['files_with_gps']}\n"
|
257 |
-
f"Upload batches: {STATS['uploads']}"
|
|
|
258 |
)
|
259 |
|
260 |
return result, output_file
|
261 |
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
demo = gr.Interface(
|
264 |
fn=process_images,
|
265 |
inputs=gr.Files(label="DROP IMAGES HERE πΈ", file_types=["image"], file_count="multiple"),
|
@@ -277,6 +537,20 @@ demo = gr.Interface(
|
|
277 |
theme="huggingface"
|
278 |
)
|
279 |
|
280 |
-
#
|
281 |
if __name__ == "__main__":
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import logging
|
7 |
import time
|
8 |
from datasets import Dataset
|
9 |
+
from huggingface_hub import HfApi, create_repo, repository_exists, CommitOperationAdd
|
10 |
+
from huggingface_hub.utils import tqdm
|
11 |
+
import threading
|
12 |
+
import sys
|
13 |
|
14 |
# Setup logging with timestamp
|
15 |
logging.basicConfig(
|
|
|
22 |
)
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
+
# Constants - edit these for your setup
|
26 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
27 |
+
HF_USERNAME = os.environ.get("HF_USERNAME", "latterworks")
|
28 |
+
DATASET_NAME = os.environ.get("DATASET_NAME", "geo-metadata")
|
29 |
SUPPORTED_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.heic', '.tiff', '.bmp', '.webp'}
|
30 |
+
CHECK_INTERVAL = int(os.environ.get("CHECK_INTERVAL", "3600")) # Check for files hourly by default
|
31 |
|
32 |
+
# Global state
|
33 |
STATS = {
|
34 |
"uploads": 0,
|
35 |
"total_files": 0,
|
36 |
+
"files_with_gps": 0,
|
37 |
+
"last_upload": 0,
|
38 |
+
"startup_time": int(time.time())
|
39 |
}
|
40 |
|
41 |
+
def ensure_dataset_exists():
|
42 |
+
"""Create dataset repository if it doesn't exist"""
|
43 |
+
if not HF_TOKEN:
|
44 |
+
logger.error("HF_TOKEN not set. Cannot create or check dataset.")
|
45 |
+
return False
|
46 |
+
|
47 |
+
try:
|
48 |
+
api = HfApi(token=HF_TOKEN)
|
49 |
+
repo_id = f"{HF_USERNAME}/{DATASET_NAME}"
|
50 |
+
|
51 |
+
# Check if repo exists
|
52 |
+
if not repository_exists(repo_id, repo_type="dataset", token=HF_TOKEN):
|
53 |
+
logger.info(f"Creating dataset repository: {repo_id}")
|
54 |
+
create_repo(
|
55 |
+
repo_id=repo_id,
|
56 |
+
repo_type="dataset",
|
57 |
+
private=False,
|
58 |
+
token=HF_TOKEN
|
59 |
+
)
|
60 |
+
|
61 |
+
# Create initial README
|
62 |
+
readme_content = f"""# {DATASET_NAME}
|
63 |
+
|
64 |
+
Automatically collected geo-metadata from images using the Geo-Metadata Extractor.
|
65 |
+
|
66 |
+
## Statistics
|
67 |
+
- Total files processed: 0
|
68 |
+
- Files with GPS data: 0
|
69 |
+
- Last updated: {time.strftime('%Y-%m-%d %H:%M:%S')}
|
70 |
+
|
71 |
+
## Data Format
|
72 |
+
Each entry contains:
|
73 |
+
- Basic image metadata (size, format, mode)
|
74 |
+
- EXIF data when available
|
75 |
+
- GPS coordinates extracted from EXIF when available
|
76 |
+
"""
|
77 |
+
|
78 |
+
# Upload README
|
79 |
+
api.upload_file(
|
80 |
+
path_or_fileobj=readme_content.encode(),
|
81 |
+
path_in_repo="README.md",
|
82 |
+
repo_id=repo_id,
|
83 |
+
repo_type="dataset",
|
84 |
+
token=HF_TOKEN,
|
85 |
+
commit_message="Initial commit with README"
|
86 |
+
)
|
87 |
+
|
88 |
+
# Create folder structure
|
89 |
+
for folder in ["batches", "images", "scripts"]:
|
90 |
+
api.upload_file(
|
91 |
+
path_or_fileobj=b"",
|
92 |
+
path_in_repo=f"{folder}/.gitkeep",
|
93 |
+
repo_id=repo_id,
|
94 |
+
repo_type="dataset",
|
95 |
+
token=HF_TOKEN,
|
96 |
+
commit_message=f"Create {folder} directory"
|
97 |
+
)
|
98 |
+
|
99 |
+
# Upload this script to the repository
|
100 |
+
try:
|
101 |
+
script_path = os.path.abspath(sys.argv[0])
|
102 |
+
if os.path.exists(script_path):
|
103 |
+
with open(script_path, "rb") as f:
|
104 |
+
script_content = f.read()
|
105 |
+
|
106 |
+
api.upload_file(
|
107 |
+
path_or_fileobj=script_content,
|
108 |
+
path_in_repo="scripts/geo_metadata_extractor.py",
|
109 |
+
repo_id=repo_id,
|
110 |
+
repo_type="dataset",
|
111 |
+
token=HF_TOKEN,
|
112 |
+
commit_message="Upload metadata extractor script"
|
113 |
+
)
|
114 |
+
except Exception as e:
|
115 |
+
logger.error(f"Failed to upload script: {e}")
|
116 |
+
|
117 |
+
logger.info(f"Dataset repository created: {repo_id}")
|
118 |
+
else:
|
119 |
+
logger.info(f"Dataset repository already exists: {repo_id}")
|
120 |
+
|
121 |
+
return True
|
122 |
+
except Exception as e:
|
123 |
+
logger.error(f"Error ensuring dataset exists: {e}")
|
124 |
+
return False
|
125 |
+
|
126 |
+
def update_readme_stats():
|
127 |
+
"""Update README with current statistics"""
|
128 |
+
if not HF_TOKEN:
|
129 |
+
return
|
130 |
+
|
131 |
+
try:
|
132 |
+
api = HfApi(token=HF_TOKEN)
|
133 |
+
repo_id = f"{HF_USERNAME}/{DATASET_NAME}"
|
134 |
+
|
135 |
+
# Create updated README content
|
136 |
+
readme_content = f"""# {DATASET_NAME}
|
137 |
+
|
138 |
+
Automatically collected geo-metadata from images using the Geo-Metadata Extractor.
|
139 |
+
|
140 |
+
## Statistics
|
141 |
+
- Total files processed: {STATS["total_files"]}
|
142 |
+
- Files with GPS data: {STATS["files_with_gps"]}
|
143 |
+
- Upload batches: {STATS["uploads"]}
|
144 |
+
- Last updated: {time.strftime('%Y-%m-%d %H:%M:%S')}
|
145 |
+
- Uptime: {format_duration(int(time.time()) - STATS["startup_time"])}
|
146 |
+
|
147 |
+
## Data Format
|
148 |
+
Each entry contains:
|
149 |
+
- Basic image metadata (size, format, mode)
|
150 |
+
- EXIF data when available
|
151 |
+
- GPS coordinates extracted from EXIF when available
|
152 |
+
"""
|
153 |
+
|
154 |
+
# Upload updated README
|
155 |
+
api.upload_file(
|
156 |
+
path_or_fileobj=readme_content.encode(),
|
157 |
+
path_in_repo="README.md",
|
158 |
+
repo_id=repo_id,
|
159 |
+
repo_type="dataset",
|
160 |
+
token=HF_TOKEN,
|
161 |
+
commit_message="Update statistics"
|
162 |
+
)
|
163 |
+
|
164 |
+
logger.info("Updated README with current statistics")
|
165 |
+
except Exception as e:
|
166 |
+
logger.error(f"Error updating README: {e}")
|
167 |
+
|
168 |
+
def format_duration(seconds):
|
169 |
+
"""Format seconds into readable duration"""
|
170 |
+
days, remainder = divmod(seconds, 86400)
|
171 |
+
hours, remainder = divmod(remainder, 3600)
|
172 |
+
minutes, seconds = divmod(remainder, 60)
|
173 |
+
|
174 |
+
parts = []
|
175 |
+
if days > 0:
|
176 |
+
parts.append(f"{days}d")
|
177 |
+
if hours > 0:
|
178 |
+
parts.append(f"{hours}h")
|
179 |
+
if minutes > 0:
|
180 |
+
parts.append(f"{minutes}m")
|
181 |
+
parts.append(f"{seconds}s")
|
182 |
+
|
183 |
+
return " ".join(parts)
|
184 |
+
|
185 |
def convert_to_degrees(value):
|
186 |
+
"""Convert GPS coordinates to decimal degrees"""
|
187 |
try:
|
188 |
if not isinstance(value, (tuple, list)) or len(value) != 3:
|
189 |
raise ValueError(f"GPS needs 3 values, got {type(value)}")
|
|
|
259 |
|
260 |
def get_image_metadata(image_path):
|
261 |
"""Extract all metadata from an image file"""
|
262 |
+
file_path = Path(image_path)
|
263 |
+
metadata = {
|
264 |
+
"file_name": str(file_path.absolute()),
|
265 |
+
"file_basename": file_path.name,
|
266 |
+
"image_path_in_repo": f"images/{file_path.name}" # Path where image will be stored in repo
|
267 |
+
}
|
268 |
+
|
269 |
try:
|
270 |
with Image.open(image_path) as image:
|
271 |
metadata.update({
|
|
|
296 |
|
297 |
# Add file details
|
298 |
metadata["file_size"] = os.path.getsize(image_path)
|
299 |
+
metadata["file_extension"] = file_path.suffix.lower()
|
300 |
metadata["extraction_timestamp"] = int(time.time())
|
301 |
|
302 |
# Test serialization
|
|
|
304 |
return metadata
|
305 |
except Exception as e:
|
306 |
logger.error(f"Error processing {image_path}: {e}")
|
307 |
+
return {"file_name": str(file_path.absolute()), "error": str(e)}
|
308 |
|
309 |
def process_images(image_files):
|
310 |
"""Process images and upload metadata to Hugging Face"""
|
311 |
if not image_files:
|
312 |
return "π« Upload some fucking images first! π·", None
|
313 |
+
|
314 |
+
# Ensure dataset exists
|
315 |
+
if not ensure_dataset_exists():
|
316 |
+
return "β Failed to create or verify dataset repository. Check logs.", None
|
317 |
+
|
318 |
+
# Create temp directory for storing files if needed
|
319 |
+
os.makedirs("temp_uploads", exist_ok=True)
|
320 |
|
321 |
# Reset stats for this batch
|
322 |
batch_stats = {
|
|
|
379 |
# Create dataset object with both filenames and full metadata
|
380 |
dataset = Dataset.from_dict({
|
381 |
"filename": filenames,
|
382 |
+
"image_path": [f"images/{f}" for f in filenames], # Path to actual image in repo
|
383 |
"metadata": metadata_list
|
384 |
})
|
385 |
|
|
|
391 |
)
|
392 |
|
393 |
# Upload raw JSONL file
|
394 |
+
api = HfApi(token=HF_TOKEN)
|
395 |
api.upload_file(
|
396 |
path_or_fileobj=output_file,
|
397 |
path_in_repo=f"batches/metadata_{timestamp}.jsonl",
|
|
|
401 |
commit_message=f"Raw metadata batch {timestamp}"
|
402 |
)
|
403 |
|
404 |
+
# Upload the actual image files
|
405 |
+
logger.info(f"Uploading {len(image_files)} image files...")
|
406 |
+
operations = []
|
407 |
+
|
408 |
+
# Process images in batches to avoid memory issues with large datasets
|
409 |
+
MAX_BATCH_SIZE = 20 # Maximum images per commit
|
410 |
+
total_uploaded = 0
|
411 |
+
|
412 |
+
# Group image files into batches
|
413 |
+
image_batches = [image_files[i:i+MAX_BATCH_SIZE] for i in range(0, len(image_files), MAX_BATCH_SIZE)]
|
414 |
+
|
415 |
+
for batch_idx, img_batch in enumerate(image_batches):
|
416 |
+
operations = []
|
417 |
+
|
418 |
+
for img_file in tqdm(img_batch, desc=f"Preparing batch {batch_idx+1}/{len(image_batches)}"):
|
419 |
+
try:
|
420 |
+
file_path = img_file.name
|
421 |
+
file_name = os.path.basename(file_path)
|
422 |
+
target_path = f"images/{file_name}"
|
423 |
+
|
424 |
+
# Add file to operations list
|
425 |
+
with open(file_path, "rb") as f:
|
426 |
+
content = f.read()
|
427 |
+
operations.append(
|
428 |
+
CommitOperationAdd(
|
429 |
+
path_in_repo=target_path,
|
430 |
+
path_or_fileobj=content
|
431 |
+
)
|
432 |
+
)
|
433 |
+
except Exception as e:
|
434 |
+
logger.error(f"Error preparing image {img_file.name} for upload: {e}")
|
435 |
+
|
436 |
+
# Commit this batch of images
|
437 |
+
if operations:
|
438 |
+
try:
|
439 |
+
logger.info(f"Committing batch {batch_idx+1}/{len(image_batches)} with {len(operations)} images...")
|
440 |
+
api.create_commit(
|
441 |
+
repo_id=f"{HF_USERNAME}/{DATASET_NAME}",
|
442 |
+
repo_type="dataset",
|
443 |
+
operations=operations,
|
444 |
+
commit_message=f"Upload {len(operations)} images (batch {batch_idx+1}/{len(image_batches)}) from upload {timestamp}"
|
445 |
+
)
|
446 |
+
total_uploaded += len(operations)
|
447 |
+
logger.info(f"Successfully uploaded batch {batch_idx+1} ({total_uploaded}/{len(image_files)} total)")
|
448 |
+
except Exception as e:
|
449 |
+
logger.error(f"Failed to upload image batch {batch_idx+1}: {e}")
|
450 |
+
|
451 |
+
logger.info(f"Image upload complete: {total_uploaded}/{len(image_files)} files uploaded")
|
452 |
+
|
453 |
+
# Update stats
|
454 |
STATS["uploads"] += 1
|
455 |
+
STATS["last_upload"] = timestamp
|
456 |
upload_status = "β
success"
|
457 |
+
|
458 |
+
# Update README in background thread
|
459 |
+
threading.Thread(target=update_readme_stats).start()
|
460 |
+
|
461 |
except Exception as e:
|
462 |
logger.error(f"HF upload failed: {e}")
|
463 |
upload_status = f"β failed: {str(e)[:100]}..."
|
|
|
473 |
f"π TOTAL STATS π\n"
|
474 |
f"Total files: {STATS['total_files']}\n"
|
475 |
f"Files with GPS: {STATS['files_with_gps']}\n"
|
476 |
+
f"Upload batches: {STATS['uploads']}\n"
|
477 |
+
f"Uptime: {format_duration(int(time.time()) - STATS['startup_time'])}"
|
478 |
)
|
479 |
|
480 |
return result, output_file
|
481 |
|
482 |
+
def scan_and_process_directory(directory_path):
|
483 |
+
"""Scan directory for images and process them"""
|
484 |
+
if not os.path.isdir(directory_path):
|
485 |
+
logger.error(f"Not a directory: {directory_path}")
|
486 |
+
return
|
487 |
+
|
488 |
+
logger.info(f"Scanning directory: {directory_path}")
|
489 |
+
image_files = []
|
490 |
+
|
491 |
+
# Find all image files in directory
|
492 |
+
for root, _, files in os.walk(directory_path):
|
493 |
+
for file in files:
|
494 |
+
file_path = os.path.join(root, file)
|
495 |
+
if Path(file_path).suffix.lower() in SUPPORTED_EXTENSIONS:
|
496 |
+
image_files.append(file_path)
|
497 |
+
|
498 |
+
if not image_files:
|
499 |
+
logger.info(f"No image files found in {directory_path}")
|
500 |
+
return
|
501 |
+
|
502 |
+
logger.info(f"Found {len(image_files)} image files in {directory_path}")
|
503 |
+
|
504 |
+
# Create file-like objects for processing
|
505 |
+
class FileObject:
|
506 |
+
def __init__(self, path):
|
507 |
+
self.name = path
|
508 |
+
|
509 |
+
process_images([FileObject(path) for path in image_files])
|
510 |
+
|
511 |
+
def schedule_directory_scan():
|
512 |
+
"""Check for new files in directory periodically"""
|
513 |
+
watch_dir = os.environ.get("WATCH_DIRECTORY")
|
514 |
+
|
515 |
+
if watch_dir and os.path.isdir(watch_dir):
|
516 |
+
logger.info(f"Scheduled scan of directory: {watch_dir}")
|
517 |
+
scan_and_process_directory(watch_dir)
|
518 |
+
|
519 |
+
# Schedule next check
|
520 |
+
threading.Timer(CHECK_INTERVAL, schedule_directory_scan).start()
|
521 |
+
|
522 |
+
# Create the UI
|
523 |
demo = gr.Interface(
|
524 |
fn=process_images,
|
525 |
inputs=gr.Files(label="DROP IMAGES HERE πΈ", file_types=["image"], file_count="multiple"),
|
|
|
537 |
theme="huggingface"
|
538 |
)
|
539 |
|
540 |
+
# Launch app and start background processes
|
541 |
if __name__ == "__main__":
|
542 |
+
# Ensure dataset exists on startup
|
543 |
+
ensure_dataset_exists()
|
544 |
+
|
545 |
+
# Start directory watcher if configured
|
546 |
+
if os.environ.get("WATCH_DIRECTORY"):
|
547 |
+
threading.Thread(target=schedule_directory_scan).start()
|
548 |
+
logger.info(f"Starting directory watcher for {os.environ.get('WATCH_DIRECTORY')}")
|
549 |
+
|
550 |
+
# Log startup info
|
551 |
+
logger.info(f"=== Application Startup at {time.strftime('%Y-%m-%d %H:%M:%S')} ===")
|
552 |
+
logger.info(f"Dataset: {HF_USERNAME}/{DATASET_NAME}")
|
553 |
+
logger.info(f"Token available: {bool(HF_TOKEN)}")
|
554 |
+
|
555 |
+
# Launch Gradio app
|
556 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|