Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,145 +1,665 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
import
|
|
|
3 |
import folium
|
4 |
-
from folium.plugins import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
"
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
"
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
).add_to(m)
|
82 |
-
|
83 |
-
if len(predictions) >= 3:
|
84 |
-
heat_data = [[p["coordinates"][0], p["coordinates"][1], p["confidence"]]
|
85 |
-
for p in predictions]
|
86 |
-
HeatMap(heat_data, radius=15, blur=10).add_to(m)
|
87 |
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
#
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
#
|
94 |
-
def
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
return
|
118 |
|
119 |
-
#
|
120 |
-
with gr.Blocks() as demo:
|
121 |
-
map_output = gr.HTML(render=False)
|
122 |
-
|
123 |
-
with gr.Row():
|
124 |
-
with gr.Column():
|
125 |
-
gr.Markdown("<h1>GeoCLIP Location Intelligence</h1>")
|
126 |
-
|
127 |
-
chatbot = gr.ChatInterface(
|
128 |
-
loc_chat,
|
129 |
-
examples=["Where is the Eiffel Tower?", "Find ancient pyramids in desert"],
|
130 |
-
additional_outputs=[map_output],
|
131 |
-
type="messages" # Critical: use messages type to avoid deprecation
|
132 |
-
)
|
133 |
-
|
134 |
-
with gr.Column():
|
135 |
-
gr.Markdown("<h1>Map Visualization</h1>")
|
136 |
-
map_output.render()
|
137 |
-
|
138 |
-
# Main entrypoint with error mitigation configuration
|
139 |
if __name__ == "__main__":
|
140 |
-
demo
|
141 |
-
|
142 |
-
server_name="0.0.0.0",
|
143 |
-
cache_examples=False, # Critical: Disable example caching
|
144 |
-
show_error=True
|
145 |
-
)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from pathlib import Path
|
3 |
+
from PIL import Image, ExifTags
|
4 |
+
import json
|
5 |
+
import sys
|
6 |
import os
|
7 |
+
import logging
|
8 |
+
import traceback
|
9 |
import folium
|
10 |
+
from folium.plugins import MarkerCluster
|
11 |
+
import pandas as pd
|
12 |
+
import io
|
13 |
+
import base64
|
14 |
+
from typing import Dict, List, Any, Optional, Tuple, Union
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
import numpy as np
|
17 |
+
from datasets import Dataset
|
18 |
+
from geoclip import LocationEncoder
|
19 |
+
import torch
|
20 |
+
|
21 |
+
# Set up logging to capture all events and errors
|
22 |
+
logging.basicConfig(
|
23 |
+
level=logging.INFO,
|
24 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
25 |
+
handlers=[logging.StreamHandler(sys.stdout)]
|
26 |
+
)
|
27 |
+
logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
# Configuration with environment variable fallback
|
30 |
+
DEFAULT_IMAGE_DIR = os.environ.get("IMAGE_DIR", "./images")
|
31 |
+
OUTPUT_METADATA_FILE = Path(os.environ.get("OUTPUT_METADATA_FILE", "./metadata.jsonl"))
|
32 |
+
HF_USERNAME = os.environ.get("HF_USERNAME", "latterworks")
|
33 |
+
DATASET_NAME = os.environ.get("DATASET_NAME", "geo-metadata")
|
34 |
+
|
35 |
+
# Supported image extensions
|
36 |
+
SUPPORTED_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.heic', '.tiff', '.bmp', '.webp'}
|
37 |
+
|
38 |
+
# Convert GPS coordinates to decimal degrees
|
39 |
+
def convert_to_degrees(value: tuple) -> Optional[float]:
|
40 |
+
try:
|
41 |
+
if not isinstance(value, (tuple, list)) or len(value) != 3:
|
42 |
+
raise ValueError("GPS value must be a tuple of 3 elements")
|
43 |
+
d, m, s = value
|
44 |
+
degrees = float(d) + (float(m) / 60.0) + (float(s) / 3600.0)
|
45 |
+
if not -180 <= degrees <= 180: # Basic sanity check
|
46 |
+
raise ValueError("GPS degrees out of valid range")
|
47 |
+
return degrees
|
48 |
+
except (TypeError, ValueError) as e:
|
49 |
+
logger.error(f"Failed to convert GPS coordinates: {e}")
|
50 |
+
return None
|
51 |
+
|
52 |
+
# Extract and format GPS metadata
|
53 |
+
def extract_gps_info(gps_info: Dict[int, Any]) -> Optional[Dict[str, Any]]:
|
54 |
+
if not isinstance(gps_info, dict):
|
55 |
+
logger.warning("GPSInfo is not a dictionary, skipping")
|
56 |
+
return None
|
57 |
+
|
58 |
+
gps_data = {}
|
59 |
+
try:
|
60 |
+
for key, val in gps_info.items():
|
61 |
+
tag_name = ExifTags.GPSTAGS.get(key, f"unknown_gps_tag_{key}")
|
62 |
+
gps_data[tag_name] = val
|
63 |
+
|
64 |
+
if 'GPSLatitude' in gps_data and 'GPSLongitude' in gps_data:
|
65 |
+
lat = convert_to_degrees(gps_data['GPSLatitude'])
|
66 |
+
lon = convert_to_degrees(gps_data['GPSLongitude'])
|
67 |
+
if lat is None or lon is None:
|
68 |
+
logger.error("Failed to convert latitude or longitude, skipping GPS data")
|
69 |
+
return None
|
70 |
+
|
71 |
+
lat_ref = gps_data.get('GPSLatitudeRef', 'N')
|
72 |
+
lon_ref = gps_data.get('GPSLongitudeRef', 'E')
|
73 |
+
if lat_ref not in {'N', 'S'} or lon_ref not in {'E', 'W'}:
|
74 |
+
logger.warning(f"Invalid GPS reference: {lat_ref}, {lon_ref}")
|
75 |
+
else:
|
76 |
+
if lat_ref == 'S':
|
77 |
+
lat = -lat
|
78 |
+
if lon_ref == 'W':
|
79 |
+
lon = -lon
|
80 |
+
|
81 |
+
gps_data['Latitude'] = lat
|
82 |
+
gps_data['Longitude'] = lon
|
83 |
+
|
84 |
+
return gps_data
|
85 |
+
except Exception as e:
|
86 |
+
logger.error(f"Error extracting GPS info: {traceback.format_exc()}")
|
87 |
+
return None
|
88 |
|
89 |
+
# Convert non-serializable objects to JSON-serializable types
|
90 |
+
def make_serializable(value: Any) -> Any:
|
91 |
+
try:
|
92 |
+
if hasattr(value, 'numerator') and hasattr(value, 'denominator'): # PIL IFDRational
|
93 |
+
return float(value.numerator) / float(value.denominator)
|
94 |
+
elif isinstance(value, (tuple, list)):
|
95 |
+
return [make_serializable(item) for item in value]
|
96 |
+
elif isinstance(value, dict):
|
97 |
+
return {str(k): make_serializable(v) for k, v in value.items()}
|
98 |
+
elif isinstance(value, bytes):
|
99 |
+
return value.decode('utf-8', errors='replace')
|
100 |
+
json.dumps(value) # Test serialization
|
101 |
+
return value
|
102 |
+
except Exception as e:
|
103 |
+
logger.warning(f"Converting to string due to serialization failure: {e}")
|
104 |
+
return str(value)
|
105 |
|
106 |
+
# Extract metadata from an image
|
107 |
+
def get_image_metadata(image_path: Path) -> Dict[str, Any]:
|
108 |
+
metadata = {"file_name": str(image_path.absolute())}
|
109 |
+
try:
|
110 |
+
with Image.open(image_path) as image:
|
111 |
+
metadata.update({
|
112 |
+
"format": image.format or "unknown",
|
113 |
+
"size": list(image.size),
|
114 |
+
"mode": image.mode or "unknown"
|
115 |
+
})
|
116 |
+
|
117 |
+
exif_data = None
|
118 |
+
try:
|
119 |
+
exif_data = image._getexif()
|
120 |
+
except AttributeError:
|
121 |
+
metadata["exif_error"] = "No EXIF data available"
|
122 |
+
except Exception as e:
|
123 |
+
metadata["exif_error"] = f"EXIF extraction failed: {str(e)}"
|
124 |
+
|
125 |
+
if exif_data and isinstance(exif_data, dict):
|
126 |
+
for tag_id, value in exif_data.items():
|
127 |
+
try:
|
128 |
+
tag_name = ExifTags.TAGS.get(tag_id, f"tag_{tag_id}").lower()
|
129 |
+
if tag_name == "gpsinfo":
|
130 |
+
gps_info = extract_gps_info(value)
|
131 |
+
if gps_info:
|
132 |
+
metadata["gps_info"] = make_serializable(gps_info)
|
133 |
+
else:
|
134 |
+
metadata[tag_name] = make_serializable(value)
|
135 |
+
except Exception as e:
|
136 |
+
metadata[f"error_tag_{tag_id}"] = str(e)
|
137 |
+
|
138 |
+
metadata["file_size"] = image_path.stat().st_size
|
139 |
+
metadata["file_extension"] = image_path.suffix.lower()
|
140 |
+
|
141 |
+
try:
|
142 |
+
json.dumps(metadata)
|
143 |
+
except Exception as e:
|
144 |
+
logger.error(f"Serialization failed for {image_path}: {e}")
|
145 |
+
clean_metadata = {k: v for k, v in metadata.items() if k in {"file_name", "format", "size", "mode", "file_size", "file_extension"}}
|
146 |
+
clean_metadata["serialization_error"] = str(e)
|
147 |
+
return clean_metadata
|
148 |
+
|
149 |
+
return metadata
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
logger.error(f"Error processing {image_path}: {traceback.format_exc()}")
|
153 |
+
return {"file_name": str(image_path.absolute()), "error": str(e)}
|
154 |
+
|
155 |
+
# Process all images in the directory
|
156 |
+
def process_images(image_dir: Union[str, Path]) -> List[Dict[str, Any]]:
|
157 |
+
if isinstance(image_dir, str):
|
158 |
+
image_dir = Path(image_dir)
|
159 |
|
160 |
+
if not image_dir.is_dir():
|
161 |
+
logger.error(f"Invalid or non-existent directory: {image_dir}")
|
162 |
+
return []
|
163 |
+
|
164 |
+
metadata_list = []
|
165 |
+
for image_path in image_dir.rglob("*"): # Recursive search
|
166 |
+
if image_path.is_file() and image_path.suffix.lower() in SUPPORTED_EXTENSIONS:
|
167 |
+
logger.info(f"Processing: {image_path}")
|
168 |
+
try:
|
169 |
+
metadata = get_image_metadata(image_path)
|
170 |
+
if metadata:
|
171 |
+
metadata_list.append(metadata)
|
172 |
+
except Exception as e:
|
173 |
+
logger.error(f"Unexpected error processing {image_path}: {traceback.format_exc()}")
|
174 |
+
metadata_list.append({"file_name": str(image_path.absolute()), "error": str(e)})
|
175 |
+
|
176 |
+
return metadata_list
|
177 |
+
|
178 |
+
# Save metadata to JSONL file
|
179 |
+
def save_metadata_to_jsonl(metadata_list: List[Dict[str, Any]], output_file: Path) -> bool:
|
180 |
+
try:
|
181 |
+
with output_file.open('w', encoding='utf-8') as f:
|
182 |
+
for entry in metadata_list:
|
183 |
+
try:
|
184 |
+
f.write(json.dumps(entry, ensure_ascii=False) + '\n')
|
185 |
+
except Exception as e:
|
186 |
+
logger.error(f"Failed to write entry for {entry.get('file_name', 'unknown')}: {e}")
|
187 |
+
f.write(json.dumps({"file_name": entry.get("file_name", "unknown"), "error": str(e)}) + '\n')
|
188 |
+
logger.info(f"Metadata saved to {output_file} with {len(metadata_list)} entries")
|
189 |
+
return True
|
190 |
+
except Exception as e:
|
191 |
+
logger.error(f"Failed to save metadata to {output_file}: {traceback.format_exc()}")
|
192 |
+
return False
|
193 |
+
|
194 |
+
# Upload dataset to Hugging Face Hub
|
195 |
+
def upload_to_huggingface(metadata_file: Path, username: str, dataset_name: str) -> bool:
|
196 |
+
try:
|
197 |
+
metadata_list = []
|
198 |
+
with metadata_file.open('r', encoding='utf-8') as f:
|
199 |
+
for line in f:
|
200 |
+
try:
|
201 |
+
metadata_list.append(json.loads(line))
|
202 |
+
except json.JSONDecodeError as e:
|
203 |
+
logger.error(f"Failed to parse line in {metadata_file}: {e}")
|
204 |
+
|
205 |
+
if not metadata_list:
|
206 |
+
logger.error("No valid metadata entries to upload")
|
207 |
+
return False
|
208 |
+
|
209 |
+
image_paths = [entry.get("file_name") for entry in metadata_list if entry.get("file_name")]
|
210 |
+
dataset = Dataset.from_dict({
|
211 |
+
"images": image_paths,
|
212 |
+
"metadata": metadata_list
|
213 |
+
})
|
214 |
+
|
215 |
+
logger.info("Attempting to upload dataset to Hugging Face Hub")
|
216 |
+
dataset.push_to_hub(f"{username}/{dataset_name}", private=False)
|
217 |
+
logger.info(f"Dataset successfully uploaded to {username}/{dataset_name}")
|
218 |
+
return True
|
219 |
+
|
220 |
+
except Exception as e:
|
221 |
+
logger.error(f"Failed to upload to Hugging Face: {traceback.format_exc()}")
|
222 |
+
return False
|
223 |
+
|
224 |
+
# Create a folium map with markers for geotagged images
|
225 |
+
def create_geo_map(metadata_list: List[Dict[str, Any]]) -> str:
|
226 |
+
try:
|
227 |
+
# Filter entries that have GPS coordinates
|
228 |
+
geo_entries = []
|
229 |
+
for entry in metadata_list:
|
230 |
+
gps_info = entry.get("gps_info", {})
|
231 |
+
if isinstance(gps_info, dict) and "Latitude" in gps_info and "Longitude" in gps_info:
|
232 |
+
geo_entries.append({
|
233 |
+
"file_name": entry.get("file_name", "Unknown"),
|
234 |
+
"latitude": gps_info["Latitude"],
|
235 |
+
"longitude": gps_info["Longitude"],
|
236 |
+
"date_time": entry.get("datetime", "Unknown")
|
237 |
+
})
|
238 |
+
|
239 |
+
if not geo_entries:
|
240 |
+
return "No geotagged images found"
|
241 |
+
|
242 |
+
# Create a DataFrame for easier handling
|
243 |
+
df = pd.DataFrame(geo_entries)
|
244 |
+
|
245 |
+
# Calculate map center based on average coordinates
|
246 |
+
center_lat = df["latitude"].mean()
|
247 |
+
center_lon = df["longitude"].mean()
|
248 |
+
|
249 |
+
# Create map
|
250 |
+
m = folium.Map(location=[center_lat, center_lon], zoom_start=10)
|
251 |
+
|
252 |
+
# Add marker cluster
|
253 |
+
marker_cluster = MarkerCluster().add_to(m)
|
254 |
+
|
255 |
+
# Add markers for each image
|
256 |
+
for _, row in df.iterrows():
|
257 |
+
popup_text = f"""
|
258 |
+
<strong>File:</strong> {os.path.basename(row['file_name'])}<br>
|
259 |
+
<strong>Date:</strong> {row['date_time']}<br>
|
260 |
+
<strong>Location:</strong> {row['latitude']:.6f}, {row['longitude']:.6f}
|
261 |
+
"""
|
262 |
+
folium.Marker(
|
263 |
+
location=[row['latitude'], row['longitude']],
|
264 |
+
popup=folium.Popup(popup_text, max_width=300)
|
265 |
+
).add_to(marker_cluster)
|
266 |
+
|
267 |
+
# Save map to HTML string
|
268 |
+
map_html = m._repr_html_()
|
269 |
+
return map_html
|
270 |
|
271 |
+
except Exception as e:
|
272 |
+
logger.error(f"Error creating map: {traceback.format_exc()}")
|
273 |
+
return f"Error creating map: {str(e)}"
|
274 |
+
|
275 |
+
# Generate embedding visualization using GeoCLIP's LocationEncoder
|
276 |
+
def generate_embedding_visualization(metadata_list: List[Dict[str, Any]]) -> Tuple[str, str]:
|
277 |
+
try:
|
278 |
+
# Filter entries that have GPS coordinates
|
279 |
+
geo_entries = []
|
280 |
+
for entry in metadata_list:
|
281 |
+
gps_info = entry.get("gps_info", {})
|
282 |
+
if isinstance(gps_info, dict) and "Latitude" in gps_info and "Longitude" in gps_info:
|
283 |
+
geo_entries.append({
|
284 |
+
"file_name": os.path.basename(entry.get("file_name", "Unknown")),
|
285 |
+
"latitude": gps_info["Latitude"],
|
286 |
+
"longitude": gps_info["Longitude"]
|
287 |
+
})
|
288 |
+
|
289 |
+
if len(geo_entries) < 2:
|
290 |
+
return "Not enough geotagged images for embedding visualization", None
|
291 |
+
|
292 |
+
# Create a DataFrame
|
293 |
+
df = pd.DataFrame(geo_entries)
|
294 |
+
|
295 |
+
# Initialize LocationEncoder
|
296 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
297 |
+
location_encoder = LocationEncoder().to(device)
|
298 |
+
|
299 |
+
# Generate embeddings
|
300 |
+
coords = torch.tensor(df[["latitude", "longitude"]].values, dtype=torch.float32).to(device)
|
301 |
+
embeddings = location_encoder(coords).detach().cpu().numpy()
|
302 |
+
|
303 |
+
# PCA visualization of embeddings
|
304 |
+
from sklearn.decomposition import PCA
|
305 |
+
pca = PCA(n_components=3)
|
306 |
+
pca_result = pca.fit_transform(embeddings)
|
307 |
+
|
308 |
+
# Create 3D scatter plot
|
309 |
+
fig = plt.figure(figsize=(10, 8))
|
310 |
+
ax = fig.add_subplot(111, projection='3d')
|
311 |
+
|
312 |
+
scatter = ax.scatter(
|
313 |
+
pca_result[:, 0],
|
314 |
+
pca_result[:, 1],
|
315 |
+
pca_result[:, 2],
|
316 |
+
c=np.arange(len(pca_result)),
|
317 |
+
cmap='viridis',
|
318 |
+
s=100,
|
319 |
+
alpha=0.8
|
320 |
+
)
|
321 |
+
|
322 |
+
# Add labels for each point
|
323 |
+
for i, filename in enumerate(df["file_name"]):
|
324 |
+
ax.text(pca_result[i, 0], pca_result[i, 1], pca_result[i, 2], filename, size=8)
|
325 |
+
|
326 |
+
ax.set_title('GeoCLIP Embedding Visualization (PCA)')
|
327 |
+
ax.set_xlabel('PCA Component 1')
|
328 |
+
ax.set_ylabel('PCA Component 2')
|
329 |
+
ax.set_zlabel('PCA Component 3')
|
330 |
+
|
331 |
+
# Convert plot to image
|
332 |
+
buffer = io.BytesIO()
|
333 |
+
plt.savefig(buffer, format='png', dpi=100, bbox_inches='tight')
|
334 |
+
buffer.seek(0)
|
335 |
+
|
336 |
+
# Convert to base64 for embedding in HTML
|
337 |
+
img_str = base64.b64encode(buffer.read()).decode('utf-8')
|
338 |
|
339 |
+
# Generate code for embedding space exploration
|
340 |
+
code_sample = """
|
341 |
+
# GeoCLIP Location Encoder Exploration Code
|
342 |
+
from geoclip import LocationEncoder
|
343 |
+
import torch
|
344 |
+
import matplotlib.pyplot as plt
|
345 |
+
from sklearn.decomposition import PCA
|
346 |
+
import numpy as np
|
347 |
+
|
348 |
+
# Initialize LocationEncoder
|
349 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
350 |
+
location_encoder = LocationEncoder().to(device)
|
351 |
+
|
352 |
+
# Generate embeddings for your coordinates
|
353 |
+
coords = torch.tensor([
|
354 |
+
[40.7128, -74.0060], # New York
|
355 |
+
[34.0522, -118.2437], # Los Angeles
|
356 |
+
[51.5074, -0.1278], # London
|
357 |
+
[35.6762, 139.6503], # Tokyo
|
358 |
+
[28.6139, 77.2090], # Delhi
|
359 |
+
], dtype=torch.float32).to(device)
|
360 |
+
|
361 |
+
embeddings = location_encoder(coords).detach().cpu().numpy()
|
362 |
+
|
363 |
+
# Visualize with PCA
|
364 |
+
pca = PCA(n_components=2)
|
365 |
+
pca_result = pca.fit_transform(embeddings)
|
366 |
+
|
367 |
+
plt.figure(figsize=(10, 8))
|
368 |
+
plt.scatter(pca_result[:, 0], pca_result[:, 1], s=100)
|
369 |
+
|
370 |
+
locations = ["New York", "Los Angeles", "London", "Tokyo", "Delhi"]
|
371 |
+
for i, location in enumerate(locations):
|
372 |
+
plt.annotate(location, (pca_result[i, 0], pca_result[i, 1]), fontsize=12)
|
373 |
+
|
374 |
+
plt.title('GeoCLIP Location Embeddings (PCA)')
|
375 |
+
plt.xlabel('PCA Component 1')
|
376 |
+
plt.ylabel('PCA Component 2')
|
377 |
+
plt.grid(True, alpha=0.3)
|
378 |
+
plt.show()
|
379 |
+
"""
|
380 |
|
381 |
+
return f'<img src="data:image/png;base64,{img_str}" alt="Embedding Visualization">', code_sample
|
382 |
|
383 |
+
except Exception as e:
|
384 |
+
logger.error(f"Error generating embedding visualization: {traceback.format_exc()}")
|
385 |
+
return f"Error generating embedding visualization: {str(e)}", None
|
386 |
+
|
387 |
+
# Function to analyze metadata and extract insights
|
388 |
+
def analyze_metadata(metadata_list: List[Dict[str, Any]]) -> str:
|
389 |
+
try:
|
390 |
+
total_images = len(metadata_list)
|
391 |
+
if total_images == 0:
|
392 |
+
return "No images found in metadata"
|
393 |
+
|
394 |
+
geotagged_count = sum(1 for entry in metadata_list if "gps_info" in entry and entry["gps_info"].get("Latitude") is not None)
|
395 |
+
camera_models = {}
|
396 |
+
capture_dates = []
|
397 |
+
|
398 |
+
for entry in metadata_list:
|
399 |
+
# Extract camera model
|
400 |
+
model = entry.get("model", "Unknown")
|
401 |
+
camera_models[model] = camera_models.get(model, 0) + 1
|
402 |
|
403 |
+
# Extract capture dates
|
404 |
+
date_str = entry.get("datetime", "")
|
405 |
+
if date_str and isinstance(date_str, str):
|
406 |
+
try:
|
407 |
+
# Simple extraction of date part (assuming format like "YYYY:MM:DD HH:MM:SS")
|
408 |
+
date_part = date_str.split()[0] if " " in date_str else date_str
|
409 |
+
capture_dates.append(date_part)
|
410 |
+
except:
|
411 |
+
pass
|
412 |
+
|
413 |
+
# Generate HTML report
|
414 |
+
html_report = f"""
|
415 |
+
<div style="font-family: Arial, sans-serif; padding: 20px; background-color: #f5f5f5; border-radius: 10px;">
|
416 |
+
<h2 style="color: #333;">Metadata Analysis Report</h2>
|
417 |
|
418 |
+
<div style="margin: 20px 0; padding: 15px; background-color: #fff; border-radius: 5px; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
|
419 |
+
<h3 style="color: #0066cc;">Summary</h3>
|
420 |
+
<ul>
|
421 |
+
<li><strong>Total Images:</strong> {total_images}</li>
|
422 |
+
<li><strong>Geotagged Images:</strong> {geotagged_count} ({geotagged_count/total_images*100:.1f}%)</li>
|
423 |
+
<li><strong>Unique Camera Models:</strong> {len(camera_models)}</li>
|
424 |
+
<li><strong>Date Range:</strong> {min(capture_dates) if capture_dates else 'Unknown'} to {max(capture_dates) if capture_dates else 'Unknown'}</li>
|
425 |
+
</ul>
|
426 |
+
</div>
|
427 |
|
428 |
+
<div style="display: flex; flex-wrap: wrap; gap: 20px;">
|
429 |
+
<div style="flex: 1; min-width: 300px; margin: 10px 0; padding: 15px; background-color: #fff; border-radius: 5px; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
|
430 |
+
<h3 style="color: #0066cc;">Camera Models</h3>
|
431 |
+
<ul>
|
432 |
+
"""
|
433 |
+
|
434 |
+
# Add top 5 camera models
|
435 |
+
for model, count in sorted(camera_models.items(), key=lambda x: x[1], reverse=True)[:5]:
|
436 |
+
html_report += f'<li><strong>{model}:</strong> {count} images ({count/total_images*100:.1f}%)</li>'
|
437 |
+
|
438 |
+
html_report += """
|
439 |
+
</ul>
|
440 |
+
</div>
|
441 |
+
</div>
|
442 |
+
</div>
|
443 |
+
"""
|
444 |
+
|
445 |
+
return html_report
|
446 |
|
447 |
+
except Exception as e:
|
448 |
+
logger.error(f"Error analyzing metadata: {traceback.format_exc()}")
|
449 |
+
return f"Error analyzing metadata: {str(e)}"
|
450 |
+
|
451 |
+
# Function to process a batch of uploaded files
|
452 |
+
def process_uploaded_files(files) -> Tuple[str, List[Dict[str, Any]], str, str, str]:
|
453 |
+
try:
|
454 |
+
if not files:
|
455 |
+
return "No files uploaded", [], "", "", ""
|
456 |
+
|
457 |
+
# Create temporary directory for uploaded files
|
458 |
+
temp_dir = Path("./temp_uploads")
|
459 |
+
temp_dir.mkdir(exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
|
461 |
+
# Save uploaded files to temp directory
|
462 |
+
for file in files:
|
463 |
+
file_path = temp_dir / file.name
|
464 |
+
with open(file_path, "wb") as f:
|
465 |
+
f.write(file.read())
|
466 |
+
|
467 |
+
# Process the images
|
468 |
+
metadata_list = process_images(temp_dir)
|
469 |
+
|
470 |
+
if not metadata_list:
|
471 |
+
return "No valid images found in uploads", [], "", "", ""
|
472 |
+
|
473 |
+
# Generate analysis and visualizations
|
474 |
+
analysis_html = analyze_metadata(metadata_list)
|
475 |
+
map_html = create_geo_map(metadata_list)
|
476 |
+
embedding_viz, code_sample = generate_embedding_visualization(metadata_list)
|
477 |
+
|
478 |
+
# Save metadata to file
|
479 |
+
output_file = Path("./uploaded_metadata.jsonl")
|
480 |
+
save_metadata_to_jsonl(metadata_list, output_file)
|
481 |
+
|
482 |
+
return f"Processed {len(metadata_list)} images successfully", metadata_list, analysis_html, map_html, embedding_viz, code_sample
|
483 |
+
|
484 |
+
except Exception as e:
|
485 |
+
logger.error(f"Error processing uploaded files: {traceback.format_exc()}")
|
486 |
+
return f"Error: {str(e)}", [], "", "", "", ""
|
487 |
|
488 |
+
# Function to process an existing directory
|
489 |
+
def process_directory(directory_path: str) -> Tuple[str, List[Dict[str, Any]], str, str, str]:
|
490 |
+
try:
|
491 |
+
if not directory_path or not os.path.isdir(directory_path):
|
492 |
+
return "Invalid directory path", [], "", "", "", ""
|
493 |
+
|
494 |
+
# Process the images in the directory
|
495 |
+
metadata_list = process_images(directory_path)
|
496 |
+
|
497 |
+
if not metadata_list:
|
498 |
+
return "No valid images found in directory", [], "", "", "", ""
|
499 |
+
|
500 |
+
# Generate analysis and visualizations
|
501 |
+
analysis_html = analyze_metadata(metadata_list)
|
502 |
+
map_html = create_geo_map(metadata_list)
|
503 |
+
embedding_viz, code_sample = generate_embedding_visualization(metadata_list)
|
504 |
+
|
505 |
+
# Save metadata to file
|
506 |
+
output_file = Path("./directory_metadata.jsonl")
|
507 |
+
save_metadata_to_jsonl(metadata_list, output_file)
|
508 |
+
|
509 |
+
return f"Processed {len(metadata_list)} images successfully", metadata_list, analysis_html, map_html, embedding_viz, code_sample
|
510 |
+
|
511 |
+
except Exception as e:
|
512 |
+
logger.error(f"Error processing directory: {traceback.format_exc()}")
|
513 |
+
return f"Error: {str(e)}", [], "", "", "", ""
|
514 |
|
515 |
+
# Upload metadata to Hugging Face
|
516 |
+
def upload_metadata(metadata_list: List[Dict[str, Any]], username: str, dataset_name: str) -> str:
|
517 |
+
try:
|
518 |
+
if not metadata_list:
|
519 |
+
return "No metadata to upload"
|
520 |
+
|
521 |
+
# Save metadata to temporary file
|
522 |
+
output_file = Path(f"./{dataset_name}_metadata.jsonl")
|
523 |
+
save_metadata_to_jsonl(metadata_list, output_file)
|
524 |
+
|
525 |
+
# Upload to Hugging Face
|
526 |
+
success = upload_to_huggingface(output_file, username, dataset_name)
|
527 |
+
|
528 |
+
if success:
|
529 |
+
return f"Successfully uploaded dataset to {username}/{dataset_name}"
|
530 |
+
else:
|
531 |
+
return "Failed to upload dataset to Hugging Face"
|
532 |
+
|
533 |
+
except Exception as e:
|
534 |
+
logger.error(f"Error uploading metadata: {traceback.format_exc()}")
|
535 |
+
return f"Error: {str(e)}"
|
536 |
+
|
537 |
+
# Create the Gradio interface
|
538 |
+
def create_interface():
|
539 |
+
with gr.Blocks(title="GeoCLIP Image Metadata Analyzer") as demo:
|
540 |
+
gr.Markdown("# 🌍 GeoCLIP Image Metadata Analyzer")
|
541 |
+
gr.Markdown("This tool extracts and analyzes EXIF metadata from images, with a focus on geolocation data. It leverages GeoCLIP embeddings to visualize geographic relationships.")
|
542 |
+
|
543 |
+
with gr.Tabs():
|
544 |
+
with gr.TabItem("Upload Files"):
|
545 |
+
with gr.Row():
|
546 |
+
with gr.Column():
|
547 |
+
upload_files = gr.Files(label="Upload Images", file_count="multiple")
|
548 |
+
upload_button = gr.Button("Process Uploaded Files")
|
549 |
+
|
550 |
+
with gr.Column():
|
551 |
+
status_output = gr.Textbox(label="Status")
|
552 |
+
|
553 |
+
with gr.Accordion("Raw Metadata", open=False):
|
554 |
+
metadata_json = gr.JSON(label="Extracted Metadata")
|
555 |
+
|
556 |
+
with gr.Row():
|
557 |
+
with gr.Column():
|
558 |
+
analysis_html = gr.HTML(label="Analysis Report")
|
559 |
+
with gr.Column():
|
560 |
+
map_html = gr.HTML(label="Geographic Map")
|
561 |
+
|
562 |
+
with gr.Row():
|
563 |
+
with gr.Column():
|
564 |
+
embedding_viz = gr.HTML(label="GeoCLIP Embedding Visualization")
|
565 |
+
with gr.Column():
|
566 |
+
embedding_code = gr.Code(language="python", label="GeoCLIP Exploration Code", lines=20)
|
567 |
|
568 |
+
with gr.TabItem("Process Directory"):
|
569 |
+
with gr.Row():
|
570 |
+
with gr.Column():
|
571 |
+
dir_path = gr.Textbox(label="Directory Path", placeholder=DEFAULT_IMAGE_DIR)
|
572 |
+
dir_button = gr.Button("Process Directory")
|
573 |
+
|
574 |
+
with gr.Column():
|
575 |
+
dir_status = gr.Textbox(label="Status")
|
576 |
+
|
577 |
+
with gr.Accordion("Raw Metadata", open=False):
|
578 |
+
dir_metadata_json = gr.JSON(label="Extracted Metadata")
|
579 |
+
|
580 |
+
with gr.Row():
|
581 |
+
with gr.Column():
|
582 |
+
dir_analysis_html = gr.HTML(label="Analysis Report")
|
583 |
+
with gr.Column():
|
584 |
+
dir_map_html = gr.HTML(label="Geographic Map")
|
585 |
+
|
586 |
+
with gr.Row():
|
587 |
+
with gr.Column():
|
588 |
+
dir_embedding_viz = gr.HTML(label="GeoCLIP Embedding Visualization")
|
589 |
+
with gr.Column():
|
590 |
+
dir_embedding_code = gr.Code(language="python", label="GeoCLIP Exploration Code", lines=20)
|
591 |
|
592 |
+
with gr.TabItem("Upload to HuggingFace"):
|
593 |
+
with gr.Row():
|
594 |
+
with gr.Column():
|
595 |
+
hf_username = gr.Textbox(label="HuggingFace Username", value=HF_USERNAME)
|
596 |
+
hf_dataset = gr.Textbox(label="Dataset Name", value=DATASET_NAME)
|
597 |
+
hf_source = gr.Radio(["From Uploaded Files", "From Directory"], label="Source", value="From Uploaded Files")
|
598 |
+
hf_upload_button = gr.Button("Upload to HuggingFace")
|
599 |
+
|
600 |
+
with gr.Column():
|
601 |
+
hf_status = gr.Textbox(label="Upload Status")
|
602 |
+
|
603 |
+
# Define event handlers
|
604 |
+
upload_button.click(
|
605 |
+
fn=process_uploaded_files,
|
606 |
+
inputs=[upload_files],
|
607 |
+
outputs=[status_output, metadata_json, analysis_html, map_html, embedding_viz, embedding_code]
|
608 |
+
)
|
609 |
+
|
610 |
+
dir_button.click(
|
611 |
+
fn=process_directory,
|
612 |
+
inputs=[dir_path],
|
613 |
+
outputs=[dir_status, dir_metadata_json, dir_analysis_html, dir_map_html, dir_embedding_viz, dir_embedding_code]
|
614 |
+
)
|
615 |
+
|
616 |
+
def handle_hf_upload(username, dataset_name, source):
|
617 |
+
if source == "From Uploaded Files":
|
618 |
+
metadata_file = Path("./uploaded_metadata.jsonl")
|
619 |
+
else:
|
620 |
+
metadata_file = Path("./directory_metadata.jsonl")
|
621 |
|
622 |
+
if not metadata_file.exists():
|
623 |
+
return "No metadata file found. Please process images first."
|
624 |
+
|
625 |
+
try:
|
626 |
+
metadata_list = []
|
627 |
+
with metadata_file.open('r', encoding='utf-8') as f:
|
628 |
+
for line in f:
|
629 |
+
try:
|
630 |
+
metadata_list.append(json.loads(line))
|
631 |
+
except json.JSONDecodeError:
|
632 |
+
pass
|
633 |
+
|
634 |
+
return upload_metadata(metadata_list, username, dataset_name)
|
635 |
+
except Exception as e:
|
636 |
+
return f"Error: {str(e)}"
|
637 |
+
|
638 |
+
hf_upload_button.click(
|
639 |
+
fn=handle_hf_upload,
|
640 |
+
inputs=[hf_username, hf_dataset, hf_source],
|
641 |
+
outputs=[hf_status]
|
642 |
+
)
|
643 |
+
|
644 |
+
gr.Markdown("""
|
645 |
+
## About this Tool
|
646 |
+
|
647 |
+
This application integrates **GeoCLIP** location embeddings to analyze and visualize geographic relationships between images.
|
648 |
+
|
649 |
+
GeoCLIP is a CLIP-inspired model that aligns locations with images for effective worldwide geo-localization.
|
650 |
+
|
651 |
+
**Features:**
|
652 |
+
- Extract EXIF metadata from images, including geolocation data
|
653 |
+
- Visualize image locations on an interactive map
|
654 |
+
- Generate GeoCLIP embeddings for geographic coordinates
|
655 |
+
- Upload processed metadata to Hugging Face datasets
|
656 |
+
|
657 |
+
**Reference:** [GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization](https://arxiv.org/abs/2309.16020)
|
658 |
+
""")
|
659 |
|
660 |
+
return demo
|
661 |
|
662 |
+
# Main entry point
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
663 |
if __name__ == "__main__":
|
664 |
+
demo = create_interface()
|
665 |
+
demo.launch()
|
|
|
|
|
|
|
|