Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,172 +1,29 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import time
|
4 |
-
import logging
|
5 |
-
import threading
|
6 |
-
import sys
|
7 |
-
from pathlib import Path
|
8 |
-
from concurrent.futures import ThreadPoolExecutor
|
9 |
-
from datasets import Dataset
|
10 |
-
from huggingface_hub import HfApi, create_repo, CommitOperationAdd, hf_hub_download
|
11 |
-
from PIL import Image, ExifTags
|
12 |
import gradio as gr
|
13 |
-
import
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
# ----------------- UTILITIES -----------------
|
37 |
-
def repository_exists(repo_id, repo_type="dataset"):
|
38 |
-
"""Check if a Hugging Face dataset repo exists."""
|
39 |
-
try:
|
40 |
-
api.repo_info(repo_id=repo_id, repo_type=repo_type)
|
41 |
-
return True
|
42 |
-
except Exception:
|
43 |
-
return False
|
44 |
-
|
45 |
-
def ensure_dataset_exists():
|
46 |
-
"""Ensure dataset repository exists or create it."""
|
47 |
-
repo_id = f"{HF_USERNAME}/{DATASET_NAME}"
|
48 |
-
if not repository_exists(repo_id):
|
49 |
-
logger.info(f"Creating dataset repository: {repo_id}")
|
50 |
-
create_repo(repo_id=repo_id, repo_type="dataset", private=False, token=HF_TOKEN)
|
51 |
-
api.upload_file(path_or_fileobj=b"", path_in_repo="images/.gitkeep", repo_id=repo_id, repo_type="dataset", commit_message="Initialize images folder")
|
52 |
-
return True
|
53 |
-
|
54 |
-
def format_duration(seconds):
|
55 |
-
"""Convert seconds to human-readable duration."""
|
56 |
-
d, h, m, s = seconds // 86400, (seconds % 86400) // 3600, (seconds % 3600) // 60, seconds % 60
|
57 |
-
return f"{d}d {h}h {m}m {s}s" if d else f"{h}h {m}m {s}s" if h else f"{m}m {s}s"
|
58 |
-
|
59 |
-
def convert_to_degrees(value):
|
60 |
-
"""Convert GPS coordinates to decimal degrees."""
|
61 |
-
try:
|
62 |
-
d, m, s = [float(x.numerator) / float(x.denominator) if hasattr(x, 'numerator') else float(x) for x in value]
|
63 |
-
return d + (m / 60.0) + (s / 3600.0)
|
64 |
-
except Exception:
|
65 |
-
return None
|
66 |
-
|
67 |
-
def extract_gps_info(gps_info):
|
68 |
-
"""Extract and process GPS data from EXIF."""
|
69 |
-
if not isinstance(gps_info, dict):
|
70 |
-
return None
|
71 |
-
try:
|
72 |
-
gps_data = {ExifTags.GPSTAGS.get(k, f"gps_{k}"): v for k, v in gps_info.items()}
|
73 |
-
if 'GPSLatitude' in gps_data and 'GPSLongitude' in gps_data:
|
74 |
-
lat, lon = convert_to_degrees(gps_data['GPSLatitude']), convert_to_degrees(gps_data['GPSLongitude'])
|
75 |
-
if lat and lon:
|
76 |
-
if gps_data.get('GPSLatitudeRef', 'N') == 'S':
|
77 |
-
lat = -lat
|
78 |
-
if gps_data.get('GPSLongitudeRef', 'E') == 'W':
|
79 |
-
lon = -lon
|
80 |
-
gps_data.update({'Latitude': round(lat, 6), 'Longitude': round(lon, 6)})
|
81 |
-
return gps_data
|
82 |
-
except Exception:
|
83 |
-
return None
|
84 |
-
|
85 |
-
def get_image_metadata(image_path):
|
86 |
-
"""Extract metadata from an image file."""
|
87 |
-
file_path = Path(image_path)
|
88 |
-
metadata = {"file_name": str(file_path.absolute()), "file_extension": file_path.suffix.lower()}
|
89 |
-
try:
|
90 |
-
with Image.open(image_path) as img:
|
91 |
-
metadata.update({"format": img.format, "size": list(img.size), "mode": img.mode})
|
92 |
-
exif_data = img._getexif()
|
93 |
-
if exif_data:
|
94 |
-
metadata.update({ExifTags.TAGS.get(k, f"tag_{k}").lower(): v for k, v in exif_data.items()})
|
95 |
-
if 'gpsinfo' in metadata:
|
96 |
-
metadata["gps_info"] = extract_gps_info(metadata.pop('gpsinfo'))
|
97 |
-
metadata["file_size"] = os.path.getsize(image_path)
|
98 |
-
metadata["timestamp"] = int(time.time())
|
99 |
-
return metadata
|
100 |
-
except Exception:
|
101 |
-
return None
|
102 |
-
|
103 |
-
# ----------------- UPLOADING -----------------
|
104 |
-
def upload_metadata(metadata_list):
|
105 |
-
"""Upload metadata to Hugging Face."""
|
106 |
-
if not metadata_list:
|
107 |
-
return "No metadata to upload"
|
108 |
-
repo_id = f"{HF_USERNAME}/{DATASET_NAME}"
|
109 |
-
dataset = Dataset.from_dict({"metadata": metadata_list})
|
110 |
-
dataset.push_to_hub(repo_id, commit_message=f"Add {len(metadata_list)} image metadata entries", token=HF_TOKEN)
|
111 |
-
return "Upload successful"
|
112 |
-
|
113 |
-
def upload_images(image_paths):
|
114 |
-
"""Upload images to Hugging Face."""
|
115 |
-
repo_id = f"{HF_USERNAME}/{DATASET_NAME}"
|
116 |
-
operations = []
|
117 |
-
for image_path in image_paths:
|
118 |
-
try:
|
119 |
-
with open(image_path, "rb") as f:
|
120 |
-
operations.append(CommitOperationAdd(path_in_repo=f"images/{Path(image_path).name}", path_or_fileobj=f.read()))
|
121 |
-
except Exception as e:
|
122 |
-
logger.error(f"Failed to process image {image_path}: {e}")
|
123 |
-
continue
|
124 |
-
if operations:
|
125 |
-
api.create_commit(repo_id=repo_id, repo_type="dataset", operations=operations, commit_message="Batch upload images", token=HF_TOKEN)
|
126 |
-
|
127 |
-
# ----------------- PROCESSING -----------------
|
128 |
-
def process_images(image_files):
|
129 |
-
"""Process images, extract metadata, and upload to Hugging Face."""
|
130 |
-
if not ensure_dataset_exists():
|
131 |
-
return "Dataset creation failed."
|
132 |
-
|
133 |
-
metadata_list = []
|
134 |
-
image_paths = []
|
135 |
-
with ThreadPoolExecutor(max_workers=MAX_BATCH_SIZE) as executor:
|
136 |
-
results = executor.map(get_image_metadata, [file.name for file in image_files])
|
137 |
-
for result, file in zip(results, image_files):
|
138 |
-
if result:
|
139 |
-
metadata_list.append(result)
|
140 |
-
image_paths.append(file.name)
|
141 |
-
|
142 |
-
if metadata_list:
|
143 |
-
upload_metadata(metadata_list)
|
144 |
-
upload_images(image_paths)
|
145 |
-
return f"Processed {len(metadata_list)} images, uploaded metadata & images."
|
146 |
-
return "No valid images processed."
|
147 |
-
|
148 |
-
# ----------------- GRADIO UI -----------------
|
149 |
-
demo = gr.Interface(
|
150 |
-
fn=process_images,
|
151 |
-
inputs=gr.Files(label="Upload Images"),
|
152 |
-
outputs=gr.Textbox(label="Status Report"),
|
153 |
-
title="Geo-Metadata Uploader",
|
154 |
-
description=f"Upload images for automatic metadata extraction and upload to Hugging Face ({HF_USERNAME}/{DATASET_NAME}).",
|
155 |
-
allow_flagging="never"
|
156 |
)
|
157 |
|
158 |
-
#
|
159 |
-
def schedule_directory_scan():
|
160 |
-
"""Periodically scan a directory for new images."""
|
161 |
-
watch_dir = os.getenv("WATCH_DIRECTORY")
|
162 |
-
if watch_dir and os.path.isdir(watch_dir):
|
163 |
-
image_files = [Path(watch_dir) / f for f in os.listdir(watch_dir) if f.lower().endswith(tuple(SUPPORTED_EXTENSIONS))]
|
164 |
-
process_images(image_files)
|
165 |
-
threading.Timer(CHECK_INTERVAL, schedule_directory_scan).start()
|
166 |
-
|
167 |
if __name__ == "__main__":
|
168 |
-
|
169 |
-
ensure_dataset_exists()
|
170 |
-
if os.getenv("WATCH_DIRECTORY"):
|
171 |
-
threading.Thread(target=schedule_directory_scan).start()
|
172 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from geoclip import GeoCLIP
|
4 |
+
|
5 |
+
# Load the GeoCLIP model
|
6 |
+
model = GeoCLIP()
|
7 |
+
|
8 |
+
# Define the function for geolocation prediction
|
9 |
+
def predict_location(image_path):
|
10 |
+
top_pred_gps, top_pred_prob = model.predict(image_path, top_k=5)
|
11 |
+
results = []
|
12 |
+
for i in range(5):
|
13 |
+
lat, lon = top_pred_gps[i]
|
14 |
+
prob = top_pred_prob[i]
|
15 |
+
results.append(f"Prediction {i+1}: ({lat:.6f}, {lon:.6f}) | Probability: {prob:.6f}")
|
16 |
+
return "\n".join(results)
|
17 |
+
|
18 |
+
# Define Gradio interface
|
19 |
+
interface = gr.Interface(
|
20 |
+
fn=predict_location,
|
21 |
+
inputs=gr.Image(type="filepath", label="Upload Image"),
|
22 |
+
outputs=gr.Textbox(label="Predicted Locations"),
|
23 |
+
title="GeoCLIP Geolocation",
|
24 |
+
description="Upload an image, and GeoCLIP will predict the top 5 GPS locations."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
)
|
26 |
|
27 |
+
# Launch the Gradio app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
if __name__ == "__main__":
|
29 |
+
interface.launch()
|
|
|
|
|
|
|
|