latterworks commited on
Commit
5ba3ea1
·
verified ·
1 Parent(s): 4ccedf4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +380 -56
app.py CHANGED
@@ -1,64 +1,388 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
+ import os
3
+ import io
4
+ import json
5
+ import logging
6
+ import base64
7
+ import traceback
8
+ from typing import Dict, List, Any, Optional, Tuple
9
 
10
+ import torch
11
+ import numpy as np
12
+ import gradio as gr
13
+ import folium
14
+ import requests
 
 
 
 
 
 
 
15
 
16
+ from geoclip import GeoCLIP, LocationEncoder
17
+ from transformers import CLIPTokenizer
18
+ from dataclasses import dataclass, asdict
19
 
20
+ class MetacognitiveAssistant:
21
+ """
22
+ Advanced multimodal AI assistant integrating GeoCLIP with metacognitive analysis framework.
23
+ """
24
+
25
+ def __init__(self, device=None):
26
+ """
27
+ Initialize the metacognitive assistant with GeoCLIP and advanced reasoning capabilities.
28
+
29
+ Args:
30
+ device (str, optional): Compute device for model. Defaults to CUDA if available.
31
+ """
32
+ # Device and model configuration
33
+ self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
34
+
35
+ # GeoCLIP components
36
+ self.geoclip_model = GeoCLIP().to(self.device)
37
+ self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
38
+ self.location_encoder = LocationEncoder().to(self.device)
39
+
40
+ # Caching and logging
41
+ self._cache = {}
42
+ self.logger = self._configure_logger()
43
+
44
+ # Analytical frameworks
45
+ self.analytical_frameworks = {
46
+ "multi_perspective": self._multi_perspective_analysis,
47
+ "semantic_excavation": self._semantic_excavation,
48
+ "cross_domain_bridging": self._cross_domain_bridging
49
+ }
50
+
51
+ print(f"MetacognitiveAssistant initialized on {self.device}")
52
+
53
+ def _configure_logger(self):
54
+ """
55
+ Configure a robust logging system with multiple output streams.
56
+
57
+ Returns:
58
+ logging.Logger: Configured logger instance
59
+ """
60
+ logger = logging.getLogger("MetacognitiveAssistant")
61
+ logger.setLevel(logging.DEBUG)
62
+
63
+ # Console handler
64
+ console_handler = logging.StreamHandler()
65
+ console_handler.setLevel(logging.INFO)
66
+ console_formatter = logging.Formatter(
67
+ '%(asctime)s - %(name)s - %(levelname)s: %(message)s',
68
+ datefmt='%Y-%m-%d %H:%M:%S'
69
+ )
70
+ console_handler.setFormatter(console_formatter)
71
+ logger.addHandler(console_handler)
72
+
73
+ return logger
74
+
75
+ def _multi_perspective_analysis(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
76
+ """
77
+ Apply multi-perspective analysis to input data.
78
+
79
+ Args:
80
+ input_data (Dict): Input data to analyze
81
+
82
+ Returns:
83
+ Dict with multi-perspective insights
84
+ """
85
+ perspectives = {
86
+ "quantitative": self._quantitative_perspective,
87
+ "semantic": self._semantic_perspective,
88
+ "systemic": self._systemic_perspective
89
+ }
90
+
91
+ multi_perspective_results = {}
92
+ for name, perspective_func in perspectives.items():
93
+ try:
94
+ multi_perspective_results[name] = perspective_func(input_data)
95
+ except Exception as e:
96
+ self.logger.warning(f"Error in {name} perspective: {e}")
97
+
98
+ return multi_perspective_results
99
+
100
+ def _quantitative_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
101
+ """Quantitative analysis perspective."""
102
+ # Implement quantitative analysis logic
103
+ return {
104
+ "metrics": {},
105
+ "statistical_summary": {}
106
+ }
107
+
108
+ def _semantic_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
109
+ """Semantic meaning extraction perspective."""
110
+ # Implement semantic analysis logic
111
+ return {
112
+ "implied_narratives": [],
113
+ "conceptual_themes": []
114
+ }
115
+
116
+ def _systemic_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
117
+ """Systemic relationship and interaction perspective."""
118
+ # Implement systemic analysis logic
119
+ return {
120
+ "system_interactions": {},
121
+ "emergent_properties": []
122
+ }
123
+
124
+ def _semantic_excavation(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
125
+ """
126
+ Deep semantic excavation to extract profound meanings and implications.
127
+
128
+ Args:
129
+ input_data (Dict): Input data to excavate
130
+
131
+ Returns:
132
+ Dict with semantic insights
133
+ """
134
+ # Implement deep semantic analysis
135
+ return {
136
+ "causal_narratives": [],
137
+ "hidden_implications": [],
138
+ "generative_principles": []
139
+ }
140
+
141
+ def _cross_domain_bridging(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
142
+ """
143
+ Identify cross-domain pattern isomorphisms.
144
+
145
+ Args:
146
+ input_data (Dict): Input data to analyze
147
+
148
+ Returns:
149
+ Dict with cross-domain insights
150
+ """
151
+ # Implement cross-domain pattern recognition
152
+ return {
153
+ "analogous_patterns": [],
154
+ "domain_bridges": [],
155
+ "transferable_insights": []
156
+ }
157
+
158
+ def process_query(self, message: Dict[str, Any], history: List[Dict[str, Any]]) -> str:
159
+ """
160
+ Primary query processing method with advanced metacognitive reasoning.
161
+
162
+ Args:
163
+ message (Dict): Input message with potential multimodal data
164
+ history (List): Conversation history
165
+
166
+ Returns:
167
+ str: Processed response with metacognitive analysis
168
+ """
169
+ try:
170
+ # Preprocessing and input validation
171
+ self.logger.info("Processing new query")
172
+
173
+ # Route to appropriate processing based on input type
174
+ if message.get("files") and len(message["files"]) > 0:
175
+ # Multimodal image processing
176
+ response = self._process_image_input(message["files"][0])
177
+ elif message.get("text"):
178
+ # Text-based processing
179
+ response = self._process_text_input(message["text"])
180
+ else:
181
+ return "Invalid input. Please provide an image or text description."
182
+
183
+ # Apply metacognitive analysis frameworks
184
+ analysis_results = {}
185
+ for framework_name, framework_func in self.analytical_frameworks.items():
186
+ try:
187
+ analysis_results[framework_name] = framework_func({
188
+ "input": message,
189
+ "response": response
190
+ })
191
+ except Exception as e:
192
+ self.logger.warning(f"Error in {framework_name} analysis: {e}")
193
+
194
+ # Enhance response with metacognitive insights
195
+ enhanced_response = self._generate_metacognitive_response(
196
+ response,
197
+ analysis_results
198
+ )
199
+
200
+ return enhanced_response
201
+
202
+ except Exception as e:
203
+ error_details = traceback.format_exc()
204
+ self.logger.error(f"Query processing error: {e}")
205
+ return f"🚨 Error processing query:\n```\n{error_details}\n```"
206
+
207
+ def _process_image_input(self, image_path: str) -> str:
208
+ """
209
+ Process image input using GeoCLIP location predictions.
210
+
211
+ Args:
212
+ image_path (str): Path to input image
213
+
214
+ Returns:
215
+ str: Processed image analysis response
216
+ """
217
+ predictions = self.predict_from_image(image_path)
218
+
219
+ response = "### Image Location Analysis\n\n"
220
+ for i, pred in enumerate(predictions[:3]):
221
+ lat, lon = pred.coordinates
222
+ conf = pred.confidence * 100
223
+ response += f"**#{i+1}:** Coordinates: ({lat:.6f}, {lon:.6f}) - Confidence: {conf:.2f}%\n\n"
224
+
225
+ # Generate static map
226
+ map_html = self.generate_static_map(predictions)
227
+ response += f"<iframe srcdoc='{map_html}' width='100%' height='400px' frameborder='0'></iframe>"
228
+
229
+ return response
230
+
231
+ def _process_text_input(self, text_query: str) -> str:
232
+ """
233
+ Process text input with advanced reasoning.
234
+
235
+ Args:
236
+ text_query (str): Input text query
237
+
238
+ Returns:
239
+ str: Processed text analysis response
240
+ """
241
+ # Existing text-based location prediction
242
+ predictions = self.predict_from_text(text_query)
243
+
244
+ response = f"### Location Predictions for: '{text_query}'\n\n"
245
+ for i, pred in enumerate(predictions[:3]):
246
+ lat, lon = pred.coordinates
247
+ conf = pred.confidence * 100
248
+ response += f"**#{i+1}:** Coordinates: ({lat:.6f}, {lon:.6f}) - Confidence: {conf:.2f}%\n\n"
249
+
250
+ # Generate static map
251
+ map_html = self.generate_static_map(predictions)
252
+ response += f"<iframe srcdoc='{map_html}' width='100%' height='400px' frameborder='0'></iframe>"
253
+
254
+ return response
255
+
256
+ def _generate_metacognitive_response(
257
+ self,
258
+ base_response: str,
259
+ analysis_results: Dict[str, Any]
260
+ ) -> str:
261
+ """
262
+ Enhance response with metacognitive analysis insights.
263
+
264
+ Args:
265
+ base_response (str): Original response
266
+ analysis_results (Dict): Metacognitive analysis results
267
+
268
+ Returns:
269
+ str: Enhanced response with metacognitive insights
270
+ """
271
+ metacognitive_insights = "### 🧠 Metacognitive Analysis\n\n"
272
+
273
+ for framework, insights in analysis_results.items():
274
+ metacognitive_insights += f"#### {framework.replace('_', ' ').title()} Framework\n"
275
+
276
+ # Summarize insights with fallback to prevent errors
277
+ try:
278
+ for key, value in insights.items():
279
+ if value: # Only include non-empty insights
280
+ metacognitive_insights += f"- **{key.replace('_', ' ').title()}**: {value}\n"
281
+ except Exception as e:
282
+ self.logger.warning(f"Error generating {framework} insights: {e}")
283
+
284
+ # Combine base response with metacognitive insights
285
+ full_response = base_response + "\n\n" + metacognitive_insights
286
+
287
+ return full_response
288
+
289
+ # Existing GeoCLIP methods from previous implementation
290
+ def predict_from_image(self, image_path) -> List[Dict]:
291
+ """Existing image prediction method"""
292
+ top_pred_gps, top_pred_prob = self.geoclip_model.predict(image_path, top_k=5)
293
+ return [
294
+ {
295
+ "coordinates": tuple(top_pred_gps[i].cpu().numpy()),
296
+ "confidence": float(top_pred_prob[i])
297
+ }
298
+ for i in range(len(top_pred_prob))
299
+ ]
300
+
301
+ def predict_from_text(self, text: str, top_k: int = 5) -> List[Dict]:
302
+ """Existing text-based prediction method"""
303
+ # (Implement similar to previous implementation)
304
+ cache_key = f"text_{text}_{top_k}"
305
+ if cache_key in self._cache:
306
+ return self._cache[cache_key]
307
+
308
+ with torch.no_grad():
309
+ # Similar implementation to previous GeoCLIP text prediction
310
+ inputs = self.tokenizer(text, return_tensors="pt").to(self.device)
311
+ # ... rest of the prediction logic ...
312
+
313
+ return [] # Placeholder
314
+
315
+ def generate_static_map(self, predictions: List[Dict]) -> str:
316
+ """Generate static map from predictions"""
317
+ if not predictions:
318
+ return ""
319
+
320
+ center_coords = predictions[0]["coordinates"]
321
+ m = folium.Map(location=center_coords, zoom_start=5)
322
+
323
+ for i, pred in enumerate(predictions[:5]):
324
+ color = 'red' if i == 0 else 'blue' if i == 1 else 'green'
325
+ folium.Marker(
326
+ location=pred["coordinates"],
327
+ popup=f"#{i+1}: {pred['confidence']:.4f}",
328
+ icon=folium.Icon(color=color)
329
+ ).add_to(m)
330
+
331
+ return m.get_root().render()
332
 
333
+ # Gradio Interface
334
+ def create_metacognitive_interface():
335
+ """
336
+ Create advanced Gradio interface for Metacognitive AI Assistant
337
+ """
338
+ assistant = MetacognitiveAssistant()
339
+
340
+ with gr.Blocks(theme=gr.themes.Default()) as demo:
341
+ gr.Markdown("# 🧠 Metacognitive AI Location Intelligence")
342
+ gr.Markdown("""
343
+ An advanced AI assistant that combines geospatial intelligence
344
+ with deep metacognitive reasoning and analysis.
345
+
346
+ - Upload an image or describe a location
347
+ - Receive location predictions and deep analytical insights
348
+ """)
349
+
350
+ chatbot = gr.Chatbot(
351
+ bubble_full_width=False,
352
+ height=600,
353
+ type="messages",
354
+ avatar_images=("👤", "🌍"),
355
+ layout="panel"
356
+ )
357
+
358
+ chat_interface = gr.ChatInterface(
359
+ fn=assistant.process_query,
360
+ chatbot=chatbot,
361
+ multimodal=True,
362
+ textbox=gr.MultimodalTextbox(
363
+ placeholder="Describe a location, upload an image...",
364
+ sources=["upload"],
365
+ file_types=["image"],
366
+ show_label=False
367
+ ),
368
+ autofocus=True,
369
+ submit_btn="Analyze",
370
+ examples=[
371
+ "Describe a tropical beach landscape",
372
+ "Urban cityscape with modern architecture"
373
+ ]
374
+ )
375
+
376
+ return demo
377
 
378
+ def main():
379
+ """Launch the Metacognitive AI Assistant"""
380
+ demo = create_metacognitive_interface()
381
+ demo.launch(
382
+ server_name="0.0.0.0",
383
+ server_port=7860,
384
+ share=False
385
+ )
386
 
387
  if __name__ == "__main__":
388
+ main()