import os import io import json import logging import base64 import traceback from typing import Dict, List, Any, Optional, Tuple import torch import numpy as np import gradio as gr import folium import requests from geoclip import GeoCLIP, LocationEncoder from transformers import CLIPTokenizer from dataclasses import dataclass, asdict class MetacognitiveAssistant: """ Advanced multimodal AI assistant integrating GeoCLIP with metacognitive analysis framework. """ def __init__(self, device=None): """ Initialize the metacognitive assistant with GeoCLIP and advanced reasoning capabilities. Args: device (str, optional): Compute device for model. Defaults to CUDA if available. """ # Device and model configuration self.device = device or ("cuda" if torch.cuda.is_available() else "cpu") # GeoCLIP components self.geoclip_model = GeoCLIP().to(self.device) self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") self.location_encoder = LocationEncoder().to(self.device) # Caching and logging self._cache = {} self.logger = self._configure_logger() # Analytical frameworks self.analytical_frameworks = { "multi_perspective": self._multi_perspective_analysis, "semantic_excavation": self._semantic_excavation, "cross_domain_bridging": self._cross_domain_bridging } print(f"MetacognitiveAssistant initialized on {self.device}") def _configure_logger(self): """ Configure a robust logging system with multiple output streams. Returns: logging.Logger: Configured logger instance """ logger = logging.getLogger("MetacognitiveAssistant") logger.setLevel(logging.DEBUG) # Console handler console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) console_handler.setFormatter(console_formatter) logger.addHandler(console_handler) return logger def _multi_perspective_analysis(self, input_data: Dict[str, Any]) -> Dict[str, Any]: """ Apply multi-perspective analysis to input data. Args: input_data (Dict): Input data to analyze Returns: Dict with multi-perspective insights """ perspectives = { "quantitative": self._quantitative_perspective, "semantic": self._semantic_perspective, "systemic": self._systemic_perspective } multi_perspective_results = {} for name, perspective_func in perspectives.items(): try: multi_perspective_results[name] = perspective_func(input_data) except Exception as e: self.logger.warning(f"Error in {name} perspective: {e}") return multi_perspective_results def _quantitative_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]: """Quantitative analysis perspective.""" # Implement quantitative analysis logic return { "metrics": {}, "statistical_summary": {} } def _semantic_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]: """Semantic meaning extraction perspective.""" # Implement semantic analysis logic return { "implied_narratives": [], "conceptual_themes": [] } def _systemic_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]: """Systemic relationship and interaction perspective.""" # Implement systemic analysis logic return { "system_interactions": {}, "emergent_properties": [] } def _semantic_excavation(self, input_data: Dict[str, Any]) -> Dict[str, Any]: """ Deep semantic excavation to extract profound meanings and implications. Args: input_data (Dict): Input data to excavate Returns: Dict with semantic insights """ # Implement deep semantic analysis return { "causal_narratives": [], "hidden_implications": [], "generative_principles": [] } def _cross_domain_bridging(self, input_data: Dict[str, Any]) -> Dict[str, Any]: """ Identify cross-domain pattern isomorphisms. Args: input_data (Dict): Input data to analyze Returns: Dict with cross-domain insights """ # Implement cross-domain pattern recognition return { "analogous_patterns": [], "domain_bridges": [], "transferable_insights": [] } def process_query(self, message: Dict[str, Any], history: List[Dict[str, Any]]) -> str: """ Primary query processing method with advanced metacognitive reasoning. Args: message (Dict): Input message with potential multimodal data history (List): Conversation history Returns: str: Processed response with metacognitive analysis """ try: # Preprocessing and input validation self.logger.info("Processing new query") # Route to appropriate processing based on input type if message.get("files") and len(message["files"]) > 0: # Multimodal image processing response = self._process_image_input(message["files"][0]) elif message.get("text"): # Text-based processing response = self._process_text_input(message["text"]) else: return "Invalid input. Please provide an image or text description." # Apply metacognitive analysis frameworks analysis_results = {} for framework_name, framework_func in self.analytical_frameworks.items(): try: analysis_results[framework_name] = framework_func({ "input": message, "response": response }) except Exception as e: self.logger.warning(f"Error in {framework_name} analysis: {e}") # Enhance response with metacognitive insights enhanced_response = self._generate_metacognitive_response( response, analysis_results ) return enhanced_response except Exception as e: error_details = traceback.format_exc() self.logger.error(f"Query processing error: {e}") return f"🚨 Error processing query:\n```\n{error_details}\n```" def _process_image_input(self, image_path: str) -> str: """ Process image input using GeoCLIP location predictions. Args: image_path (str): Path to input image Returns: str: Processed image analysis response """ predictions = self.predict_from_image(image_path) response = "### Image Location Analysis\n\n" for i, pred in enumerate(predictions[:3]): lat, lon = pred.coordinates conf = pred.confidence * 100 response += f"**#{i+1}:** Coordinates: ({lat:.6f}, {lon:.6f}) - Confidence: {conf:.2f}%\n\n" # Generate static map map_html = self.generate_static_map(predictions) response += f"" return response def _process_text_input(self, text_query: str) -> str: """ Process text input with advanced reasoning. Args: text_query (str): Input text query Returns: str: Processed text analysis response """ # Existing text-based location prediction predictions = self.predict_from_text(text_query) response = f"### Location Predictions for: '{text_query}'\n\n" for i, pred in enumerate(predictions[:3]): lat, lon = pred.coordinates conf = pred.confidence * 100 response += f"**#{i+1}:** Coordinates: ({lat:.6f}, {lon:.6f}) - Confidence: {conf:.2f}%\n\n" # Generate static map map_html = self.generate_static_map(predictions) response += f"" return response def _generate_metacognitive_response( self, base_response: str, analysis_results: Dict[str, Any] ) -> str: """ Enhance response with metacognitive analysis insights. Args: base_response (str): Original response analysis_results (Dict): Metacognitive analysis results Returns: str: Enhanced response with metacognitive insights """ metacognitive_insights = "### 🧠 Metacognitive Analysis\n\n" for framework, insights in analysis_results.items(): metacognitive_insights += f"#### {framework.replace('_', ' ').title()} Framework\n" # Summarize insights with fallback to prevent errors try: for key, value in insights.items(): if value: # Only include non-empty insights metacognitive_insights += f"- **{key.replace('_', ' ').title()}**: {value}\n" except Exception as e: self.logger.warning(f"Error generating {framework} insights: {e}") # Combine base response with metacognitive insights full_response = base_response + "\n\n" + metacognitive_insights return full_response # Existing GeoCLIP methods from previous implementation def predict_from_image(self, image_path) -> List[Dict]: """Existing image prediction method""" top_pred_gps, top_pred_prob = self.geoclip_model.predict(image_path, top_k=5) return [ { "coordinates": tuple(top_pred_gps[i].cpu().numpy()), "confidence": float(top_pred_prob[i]) } for i in range(len(top_pred_prob)) ] def predict_from_text(self, text: str, top_k: int = 5) -> List[Dict]: """Existing text-based prediction method""" # (Implement similar to previous implementation) cache_key = f"text_{text}_{top_k}" if cache_key in self._cache: return self._cache[cache_key] with torch.no_grad(): # Similar implementation to previous GeoCLIP text prediction inputs = self.tokenizer(text, return_tensors="pt").to(self.device) # ... rest of the prediction logic ... return [] # Placeholder def generate_static_map(self, predictions: List[Dict]) -> str: """Generate static map from predictions""" if not predictions: return "" center_coords = predictions[0]["coordinates"] m = folium.Map(location=center_coords, zoom_start=5) for i, pred in enumerate(predictions[:5]): color = 'red' if i == 0 else 'blue' if i == 1 else 'green' folium.Marker( location=pred["coordinates"], popup=f"#{i+1}: {pred['confidence']:.4f}", icon=folium.Icon(color=color) ).add_to(m) return m.get_root().render() # Gradio Interface def create_metacognitive_interface(): """ Create advanced Gradio interface for Metacognitive AI Assistant """ assistant = MetacognitiveAssistant() with gr.Blocks(theme=gr.themes.Default()) as demo: gr.Markdown("# 🧠 Metacognitive AI Location Intelligence") gr.Markdown(""" An advanced AI assistant that combines geospatial intelligence with deep metacognitive reasoning and analysis. - Upload an image or describe a location - Receive location predictions and deep analytical insights """) chatbot = gr.Chatbot( bubble_full_width=False, height=600, type="messages", avatar_images=("👤", "🌍"), layout="panel" ) chat_interface = gr.ChatInterface( fn=assistant.process_query, chatbot=chatbot, multimodal=True, textbox=gr.MultimodalTextbox( placeholder="Describe a location, upload an image...", sources=["upload"], file_types=["image"], show_label=False ), autofocus=True, submit_btn="Analyze", examples=[ "Describe a tropical beach landscape", "Urban cityscape with modern architecture" ] ) return demo def main(): """Launch the Metacognitive AI Assistant""" demo = create_metacognitive_interface() demo.launch( server_name="0.0.0.0", server_port=7860, share=False ) if __name__ == "__main__": main()