import os
import io
import json
import logging
import base64
import traceback
from typing import Dict, List, Any, Optional, Tuple
import torch
import numpy as np
import gradio as gr
import folium
import requests
from geoclip import GeoCLIP, LocationEncoder
from transformers import CLIPTokenizer
from dataclasses import dataclass, asdict
class MetacognitiveAssistant:
"""
Advanced multimodal AI assistant integrating GeoCLIP with metacognitive analysis framework.
"""
def __init__(self, device=None):
"""
Initialize the metacognitive assistant with GeoCLIP and advanced reasoning capabilities.
Args:
device (str, optional): Compute device for model. Defaults to CUDA if available.
"""
# Device and model configuration
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
# GeoCLIP components
self.geoclip_model = GeoCLIP().to(self.device)
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
self.location_encoder = LocationEncoder().to(self.device)
# Caching and logging
self._cache = {}
self.logger = self._configure_logger()
# Analytical frameworks
self.analytical_frameworks = {
"multi_perspective": self._multi_perspective_analysis,
"semantic_excavation": self._semantic_excavation,
"cross_domain_bridging": self._cross_domain_bridging
}
print(f"MetacognitiveAssistant initialized on {self.device}")
def _configure_logger(self):
"""
Configure a robust logging system with multiple output streams.
Returns:
logging.Logger: Configured logger instance
"""
logger = logging.getLogger("MetacognitiveAssistant")
logger.setLevel(logging.DEBUG)
# Console handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
console_handler.setFormatter(console_formatter)
logger.addHandler(console_handler)
return logger
def _multi_perspective_analysis(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Apply multi-perspective analysis to input data.
Args:
input_data (Dict): Input data to analyze
Returns:
Dict with multi-perspective insights
"""
perspectives = {
"quantitative": self._quantitative_perspective,
"semantic": self._semantic_perspective,
"systemic": self._systemic_perspective
}
multi_perspective_results = {}
for name, perspective_func in perspectives.items():
try:
multi_perspective_results[name] = perspective_func(input_data)
except Exception as e:
self.logger.warning(f"Error in {name} perspective: {e}")
return multi_perspective_results
def _quantitative_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""Quantitative analysis perspective."""
# Implement quantitative analysis logic
return {
"metrics": {},
"statistical_summary": {}
}
def _semantic_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""Semantic meaning extraction perspective."""
# Implement semantic analysis logic
return {
"implied_narratives": [],
"conceptual_themes": []
}
def _systemic_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""Systemic relationship and interaction perspective."""
# Implement systemic analysis logic
return {
"system_interactions": {},
"emergent_properties": []
}
def _semantic_excavation(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Deep semantic excavation to extract profound meanings and implications.
Args:
input_data (Dict): Input data to excavate
Returns:
Dict with semantic insights
"""
# Implement deep semantic analysis
return {
"causal_narratives": [],
"hidden_implications": [],
"generative_principles": []
}
def _cross_domain_bridging(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Identify cross-domain pattern isomorphisms.
Args:
input_data (Dict): Input data to analyze
Returns:
Dict with cross-domain insights
"""
# Implement cross-domain pattern recognition
return {
"analogous_patterns": [],
"domain_bridges": [],
"transferable_insights": []
}
def process_query(self, message: Dict[str, Any], history: List[Dict[str, Any]]) -> str:
"""
Primary query processing method with advanced metacognitive reasoning.
Args:
message (Dict): Input message with potential multimodal data
history (List): Conversation history
Returns:
str: Processed response with metacognitive analysis
"""
try:
# Preprocessing and input validation
self.logger.info("Processing new query")
# Route to appropriate processing based on input type
if message.get("files") and len(message["files"]) > 0:
# Multimodal image processing
response = self._process_image_input(message["files"][0])
elif message.get("text"):
# Text-based processing
response = self._process_text_input(message["text"])
else:
return "Invalid input. Please provide an image or text description."
# Apply metacognitive analysis frameworks
analysis_results = {}
for framework_name, framework_func in self.analytical_frameworks.items():
try:
analysis_results[framework_name] = framework_func({
"input": message,
"response": response
})
except Exception as e:
self.logger.warning(f"Error in {framework_name} analysis: {e}")
# Enhance response with metacognitive insights
enhanced_response = self._generate_metacognitive_response(
response,
analysis_results
)
return enhanced_response
except Exception as e:
error_details = traceback.format_exc()
self.logger.error(f"Query processing error: {e}")
return f"🚨 Error processing query:\n```\n{error_details}\n```"
def _process_image_input(self, image_path: str) -> str:
"""
Process image input using GeoCLIP location predictions.
Args:
image_path (str): Path to input image
Returns:
str: Processed image analysis response
"""
predictions = self.predict_from_image(image_path)
response = "### Image Location Analysis\n\n"
for i, pred in enumerate(predictions[:3]):
lat, lon = pred.coordinates
conf = pred.confidence * 100
response += f"**#{i+1}:** Coordinates: ({lat:.6f}, {lon:.6f}) - Confidence: {conf:.2f}%\n\n"
# Generate static map
map_html = self.generate_static_map(predictions)
response += f""
return response
def _process_text_input(self, text_query: str) -> str:
"""
Process text input with advanced reasoning.
Args:
text_query (str): Input text query
Returns:
str: Processed text analysis response
"""
# Existing text-based location prediction
predictions = self.predict_from_text(text_query)
response = f"### Location Predictions for: '{text_query}'\n\n"
for i, pred in enumerate(predictions[:3]):
lat, lon = pred.coordinates
conf = pred.confidence * 100
response += f"**#{i+1}:** Coordinates: ({lat:.6f}, {lon:.6f}) - Confidence: {conf:.2f}%\n\n"
# Generate static map
map_html = self.generate_static_map(predictions)
response += f""
return response
def _generate_metacognitive_response(
self,
base_response: str,
analysis_results: Dict[str, Any]
) -> str:
"""
Enhance response with metacognitive analysis insights.
Args:
base_response (str): Original response
analysis_results (Dict): Metacognitive analysis results
Returns:
str: Enhanced response with metacognitive insights
"""
metacognitive_insights = "### 🧠 Metacognitive Analysis\n\n"
for framework, insights in analysis_results.items():
metacognitive_insights += f"#### {framework.replace('_', ' ').title()} Framework\n"
# Summarize insights with fallback to prevent errors
try:
for key, value in insights.items():
if value: # Only include non-empty insights
metacognitive_insights += f"- **{key.replace('_', ' ').title()}**: {value}\n"
except Exception as e:
self.logger.warning(f"Error generating {framework} insights: {e}")
# Combine base response with metacognitive insights
full_response = base_response + "\n\n" + metacognitive_insights
return full_response
# Existing GeoCLIP methods from previous implementation
def predict_from_image(self, image_path) -> List[Dict]:
"""Existing image prediction method"""
top_pred_gps, top_pred_prob = self.geoclip_model.predict(image_path, top_k=5)
return [
{
"coordinates": tuple(top_pred_gps[i].cpu().numpy()),
"confidence": float(top_pred_prob[i])
}
for i in range(len(top_pred_prob))
]
def predict_from_text(self, text: str, top_k: int = 5) -> List[Dict]:
"""Existing text-based prediction method"""
# (Implement similar to previous implementation)
cache_key = f"text_{text}_{top_k}"
if cache_key in self._cache:
return self._cache[cache_key]
with torch.no_grad():
# Similar implementation to previous GeoCLIP text prediction
inputs = self.tokenizer(text, return_tensors="pt").to(self.device)
# ... rest of the prediction logic ...
return [] # Placeholder
def generate_static_map(self, predictions: List[Dict]) -> str:
"""Generate static map from predictions"""
if not predictions:
return ""
center_coords = predictions[0]["coordinates"]
m = folium.Map(location=center_coords, zoom_start=5)
for i, pred in enumerate(predictions[:5]):
color = 'red' if i == 0 else 'blue' if i == 1 else 'green'
folium.Marker(
location=pred["coordinates"],
popup=f"#{i+1}: {pred['confidence']:.4f}",
icon=folium.Icon(color=color)
).add_to(m)
return m.get_root().render()
# Gradio Interface
def create_metacognitive_interface():
"""
Create advanced Gradio interface for Metacognitive AI Assistant
"""
assistant = MetacognitiveAssistant()
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# 🧠 Metacognitive AI Location Intelligence")
gr.Markdown("""
An advanced AI assistant that combines geospatial intelligence
with deep metacognitive reasoning and analysis.
- Upload an image or describe a location
- Receive location predictions and deep analytical insights
""")
chatbot = gr.Chatbot(
bubble_full_width=False,
height=600,
type="messages",
avatar_images=("👤", "🌍"),
layout="panel"
)
chat_interface = gr.ChatInterface(
fn=assistant.process_query,
chatbot=chatbot,
multimodal=True,
textbox=gr.MultimodalTextbox(
placeholder="Describe a location, upload an image...",
sources=["upload"],
file_types=["image"],
show_label=False
),
autofocus=True,
submit_btn="Analyze",
examples=[
"Describe a tropical beach landscape",
"Urban cityscape with modern architecture"
]
)
return demo
def main():
"""Launch the Metacognitive AI Assistant"""
demo = create_metacognitive_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
if __name__ == "__main__":
main()