Spaces:
Sleeping
Sleeping
Lautaro Cardarelli
commited on
Commit
·
c2e73e4
1
Parent(s):
f61923d
test
Browse files
app.py
CHANGED
@@ -9,9 +9,6 @@ from transformers import PreTrainedModel
|
|
9 |
from transformers import PreTrainedTokenizer
|
10 |
from transformers import AutoTokenizer
|
11 |
|
12 |
-
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
13 |
-
model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
14 |
-
|
15 |
|
16 |
# Question launcher
|
17 |
class E2EQGPipeline:
|
@@ -79,9 +76,13 @@ class E2EQGPipeline:
|
|
79 |
return inputs
|
80 |
|
81 |
|
|
|
|
|
|
|
|
|
82 |
def generate_questions(text):
|
83 |
-
|
84 |
-
|
85 |
qg_final_model = E2EQGPipeline(qg_model, qg_tokenizer)
|
86 |
questions = qg_final_model.generate_questions(text)
|
87 |
translator = Translator()
|
@@ -89,6 +90,10 @@ def generate_questions(text):
|
|
89 |
return translated_questions
|
90 |
|
91 |
|
|
|
|
|
|
|
|
|
92 |
def generate_summary(text):
|
93 |
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
|
94 |
summary_ids = model.generate(inputs, max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
|
|
|
9 |
from transformers import PreTrainedTokenizer
|
10 |
from transformers import AutoTokenizer
|
11 |
|
|
|
|
|
|
|
12 |
|
13 |
# Question launcher
|
14 |
class E2EQGPipeline:
|
|
|
76 |
return inputs
|
77 |
|
78 |
|
79 |
+
qg_model = T5ForConditionalGeneration.from_pretrained('valhalla/t5-base-e2e-qg')
|
80 |
+
qg_tokenizer = T5Tokenizer.from_pretrained('valhalla/t5-base-e2e-qg')
|
81 |
+
|
82 |
+
|
83 |
def generate_questions(text):
|
84 |
+
print('qg')
|
85 |
+
print(text)
|
86 |
qg_final_model = E2EQGPipeline(qg_model, qg_tokenizer)
|
87 |
questions = qg_final_model.generate_questions(text)
|
88 |
translator = Translator()
|
|
|
90 |
return translated_questions
|
91 |
|
92 |
|
93 |
+
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
94 |
+
model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
95 |
+
|
96 |
+
|
97 |
def generate_summary(text):
|
98 |
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
|
99 |
summary_ids = model.generate(inputs, max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
|