Lautaro Cardarelli commited on
Commit
c2e73e4
·
1 Parent(s): f61923d
Files changed (1) hide show
  1. app.py +10 -5
app.py CHANGED
@@ -9,9 +9,6 @@ from transformers import PreTrainedModel
9
  from transformers import PreTrainedTokenizer
10
  from transformers import AutoTokenizer
11
 
12
- tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
13
- model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
14
-
15
 
16
  # Question launcher
17
  class E2EQGPipeline:
@@ -79,9 +76,13 @@ class E2EQGPipeline:
79
  return inputs
80
 
81
 
 
 
 
 
82
  def generate_questions(text):
83
- qg_model = T5ForConditionalGeneration.from_pretrained('valhalla/t5-base-e2e-qg')
84
- qg_tokenizer = T5Tokenizer.from_pretrained('valhalla/t5-base-e2e-qg')
85
  qg_final_model = E2EQGPipeline(qg_model, qg_tokenizer)
86
  questions = qg_final_model.generate_questions(text)
87
  translator = Translator()
@@ -89,6 +90,10 @@ def generate_questions(text):
89
  return translated_questions
90
 
91
 
 
 
 
 
92
  def generate_summary(text):
93
  inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
94
  summary_ids = model.generate(inputs, max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
 
9
  from transformers import PreTrainedTokenizer
10
  from transformers import AutoTokenizer
11
 
 
 
 
12
 
13
  # Question launcher
14
  class E2EQGPipeline:
 
76
  return inputs
77
 
78
 
79
+ qg_model = T5ForConditionalGeneration.from_pretrained('valhalla/t5-base-e2e-qg')
80
+ qg_tokenizer = T5Tokenizer.from_pretrained('valhalla/t5-base-e2e-qg')
81
+
82
+
83
  def generate_questions(text):
84
+ print('qg')
85
+ print(text)
86
  qg_final_model = E2EQGPipeline(qg_model, qg_tokenizer)
87
  questions = qg_final_model.generate_questions(text)
88
  translator = Translator()
 
90
  return translated_questions
91
 
92
 
93
+ tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
94
+ model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
95
+
96
+
97
  def generate_summary(text):
98
  inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
99
  summary_ids = model.generate(inputs, max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)