Spaces:
Running
Running
File size: 5,822 Bytes
8e68ad1 35c36b4 56e8880 fd13ef2 35c36b4 578adcb 901e92c 35c36b4 6594157 d707ec3 6594157 643980c 6594157 1818a85 03baf62 6594157 578adcb 35c36b4 4cfc3d6 35c36b4 578adcb 35c36b4 578adcb 35c36b4 6594157 578adcb 35c36b4 578adcb 35c36b4 578adcb 35c36b4 578adcb 35c36b4 578adcb 35c36b4 578adcb 35c36b4 c1ecfc3 2634260 643980c 578adcb 7cd2eec 643980c 7cd2eec c1ecfc3 643980c c1ecfc3 a580f61 c1ecfc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import streamlit as st
import pandas as pd
from PIL import Image
import base64
from io import BytesIO
# βββ Page config ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
st.set_page_config(page_title="ExpertLongBench Leaderboard", layout="wide")
logo_image = Image.open("src/ExpertLongBench.png")
# Display logo
buffered = BytesIO()
logo_image.save(buffered, format="PNG")
img_data = base64.b64encode(buffered.getvalue()).decode("utf-8")
st.markdown(
f"""
<div class="logo-container" style="display:flex; justify-content: center;">
<img src="data:image/png;base64,{img_data}" style="width:50%; max-width:700px;"/>
</div>
""",
unsafe_allow_html=True
)
st.markdown(
'''
<div class="header">
<br/>
<p style="font-size:22px;">
ExpertLongBench: Benchmarking Language Models on Expert-Level Long-Form Generation with Structured Checklists
</p>
<p style="font-size:20px;">
π» <a href="https://github.com/launchnlp/ExpertLongBench">GitHub</a> | π€ <a href="https://huggingface.co/datasets/launch/ExpertLongBench">Public Dataset</a> | π <a href="https://arxiv.org/abs/2506.01241">Paper</a> |
βοΈ <strong>Version</strong>: <strong>V1</strong> | <strong># Models</strong>: 12 | Updated: <strong>May 2025</strong>
</p>
</div>
''',
unsafe_allow_html=True
)
# βββ Load data ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
@st.cache_data
def load_data(path="src/models.json"):
df = pd.read_json(path, lines=True)
score_cols = [f"T{i}" for i in range(1, 12)]
df["Avg"] = df[score_cols].mean(axis=1).round(1)
# Compute rank per column (1 = best)
for col in score_cols + ["Avg"]:
df[f"{col}_rank"] = df[col].rank(ascending=False, method="min").astype(int)
return df
df = load_data()
# Precompute max ranks for color scaling
score_cols = [f"T{i}" for i in range(1, 12)] + ["Avg"]
max_ranks = {col: df[f"{col}_rank"].max() for col in score_cols}
# βββ Tabs ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
tab1, tab2 = st.tabs(["Leaderboard", "Benchmark Details"])
with tab1:
# st.markdown("**Leaderboard:** higher scores shaded green; best models bolded.")
# Build raw HTML table
cols = ["Model"] + [f"T{i}" for i in range(1,12)] + ["Avg"]
html = "<table style='border-collapse:collapse; width:100%; font-size:14px;'>"
# header
html += "<tr>" + "".join(f"<th style='padding:6px;'>{col}</th>" for col in cols) + "</tr>"
# rows
for _, row in df.iterrows():
html += "<tr>"
for col in cols:
val = row[col]
if col == "Model":
html += f"<td style='padding:6px; text-align:left;'>{val}</td>"
else:
rank = int(row[f"{col}_rank"])
norm = 1 - (rank - 1) / ((max_ranks[col] - 1) or 1)
# interpolate green (182,243,182) β white (255,255,255)
r = int(255 - norm*(255-182))
g = int(255 - norm*(255-243))
b = 255
bold = "font-weight:bold;" if rank == 1 else ""
style = f"background-color:rgb({r},{g},{b}); padding:6px; {bold}"
html += f"<td style='{style}'>{val}</td>"
html += "</tr>"
html += "</table>"
st.markdown(html, unsafe_allow_html=True)
with tab2:
pipeline_image = Image.open("src/pipeline.png")
buffered2 = BytesIO()
pipeline_image.save(buffered2, format="PNG")
img_data_pipeline = base64.b64encode(buffered2.getvalue()).decode("utf-8")
st.markdown("## Abstract")
st.write(
"""
The paper introduces ExpertLongBench, an expert-level benchmark containing 11 tasks from 9 domains that reflect realistic expert workflows and applications.
Beyond question answering, the application-driven tasks in ExpertLongBench demand long-form outputs that can exceed 5,000 tokens and strict adherence to domain-specific requirements. Notably, each task includes rubrics, designed or validated by domain experts, to specify task requirements and guide output evaluation. Furthermore, we propose CLEAR to support accurate evaluation of long-form model outputs on our benchmark.
For fine-grained, expert-aligned evaluation, CLEAR derives checklists from model outputs and reference outputs by extracting information corresponding to items on the task-specific rubrics.
Checklist items for model outputs are then compared with corresponding items for reference outputs to assess their correctness, enabling grounded evaluation.
We benchmark 11 large language models (LLMs) and analyze components in CLEAR, showing that:
(1) existing LLMs, with the top performer achieving only a 26.8% F1 score, require significant improvement for expert-level tasks;
(2) models can generate content corresponding to the required aspects, though often not accurately; and
(3) accurate checklist extraction and comparison in CLEAR can be achieved by open-weight models for more scalable and low-cost usage.
"""
)
st.markdown("## Pipeline")
st.markdown(
f"""
<div class="logo-container" style="display:flex; justify-content: center;">
<img src="data:image/png;base64,{img_data_pipeline}" style="width:90%; max-width:900px;"/>
</div>
""",
unsafe_allow_html=True
)
|