import streamlit as st
import pandas as pd
from PIL import Image
import base64
from io import BytesIO
# Set up page config
st.set_page_config(
page_title="FactBench Leaderboard",
layout="wide"
)
# load header
with open("_header.md", "r") as f:
HEADER_MD = f.read()
# Load the image
image = Image.open("factEvalSteps.png")
logo_image = Image.open("Factbench_logo.png")
# Custom CSS for the page
st.markdown(
"""
""",
unsafe_allow_html=True
)
# Display title and description
st.markdown('
', unsafe_allow_html=True)
# st.image(logo_image, output_format="PNG", width=200)
# Convert the image to base64
buffered = BytesIO()
logo_image.save(buffered, format="PNG")
img_data = base64.b64encode(buffered.getvalue()).decode("utf-8")
st.markdown(
f"""
""",
unsafe_allow_html=True
)
# header_md_text = HEADER_MD # make some parameters later
# gr.Markdown(header_md_text, elem_classes="markdown-text")
st.markdown(
'''
''',
unsafe_allow_html=True
)
# st.markdown('
FactBench Leaderboard
',
# unsafe_allow_html=True)
# st.markdown('
Benchmark for LM Factuality Evaluation
', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
# Load the data
data_path = "tiered_models_data.csv"
df = pd.read_csv(data_path)
# Assign ranks within each tier based on factuality_score
df['rank'] = df.groupby('tier')['factuality_score'].rank(
ascending=False, method='min').astype(int)
# Replace NaN values with '-'
df.fillna('-', inplace=True)
df['original_order'] = df.groupby('tier').cumcount()
# Create tabs
st.markdown("""
""", unsafe_allow_html=True)
tab1, tab2, tab3 = st.tabs(["Leaderboard", "Benchmark Details", "Submit your models"])
# Tab 1: Leaderboard
with tab1:
# df['original_order'] = df.groupby('tier').cumcount()
# print(df['original_order'])
# st.markdown('', unsafe_allow_html=True)
st.markdown('# Metrics Explanation')
st.markdown("""
Factual Precision measures the ratio of supported units divided by all units averaged over model responses. Hallucination Score quantifies the incorrect or inconclusive contents within a model response, as described in the paper. We also provide statistics on the average number of units labelled as unsupported (Avg. # Unsupported), the average number of units labelled as undecidable (Avg. # Undecided), the average length of the response in terms of the number of tokens, and the average verifiable units existing in the model responses (Avg. # Units).
π for closed LLMs; π for open-weights LLMs; π¨ for newly added models"
""",
unsafe_allow_html=True
)
st.markdown('@Farima populate here')
st.markdown("""
""", unsafe_allow_html=True)
# Dropdown menu to filter tiers
tiers = ['All Tiers', 'Tier 1: Hard', 'Tier 2: Moderate', 'Tier 3: Easy']
selected_tier = st.selectbox('Select Tier:', tiers)
# Filter the data based on the selected tier
if selected_tier != 'All Tiers':
filtered_df = df[df['tier'] == selected_tier]
else:
filtered_df = df
sort_by_factuality = st.checkbox('Sort by Factuality Score')
# Sort the dataframe based on Factuality Score if the checkbox is selected
if sort_by_factuality:
updated_filtered_df = filtered_df.sort_values(
by=['tier', 'factuality_score'], ascending=[True, False]
)
else:
updated_filtered_df = filtered_df.sort_values(
by=['tier', 'original_order']
)
# Create HTML for the table
if selected_tier == 'All Tiers':
html = '''
Tier |
Rank |
Model |
Factual Precision |
Hallucination Score |
Avg. # Tokens |
Avg. # Units |
Avg. # Undecidable |
Avg. # Unsupported |
'''
else:
html = '''
Rank |
Model |
Factual Precision |
Hallucination Score |
Avg. # Tokens |
Avg. # Units |
Avg. # Undecidable |
Avg. # Unsupported |
'''
# Generate the rows of the table
current_tier = None
for i, row in updated_filtered_df.iterrows():
html += ''
# Only display the 'Tier' column if 'All Tiers' is selected
if selected_tier == 'All Tiers':
if row['tier'] != current_tier:
current_tier = row['tier']
html += f'{current_tier} | '
# Fill in model and scores
html += f'''
{row['rank']} |
{row['model']} |
{row['factuality_score']} |
{row['hallucination_score']} |
{row['avg_tokens']} |
{row['avg_factual_units']} |
{row['avg_undecidable_units']:.2f} |
{row['avg_unsupported_units']:.2f} |
'''
# Close the table
html += '''
'''
# Display the table
st.markdown(html, unsafe_allow_html=True)
st.markdown('', unsafe_allow_html=True)
# Tab 2: Details
with tab2:
st.markdown('', unsafe_allow_html=True)
st.markdown('
Benchmark Details
',
unsafe_allow_html=True)
st.image(image, use_column_width=True)
st.markdown('### VERIFY: A Pipeline for Factuality Evaluation')
st.write(
"Language models (LMs) are widely used by an increasing number of users, "
"underscoring the challenge of maintaining factual accuracy across a broad range of topics. "
"We present VERIFY (Verification and Evidence Retrieval for Factuality evaluation), "
"a pipeline to evaluate LMs' factual accuracy in real-world user interactions."
)
st.markdown('### Content Categorization')
st.write(
"VERIFY considers the verifiability of LM-generated content and categorizes content units as "
"`supported`, `unsupported`, or `undecidable` based on the retrieved web evidence. "
"Importantly, VERIFY's factuality judgments correlate better with human evaluations than existing methods."
)
st.markdown('### Hallucination Prompts & FactBench Dataset')
st.write(
"Using VERIFY, we identify 'hallucination prompts' across diverse topicsβthose eliciting the highest rates of "
"incorrect or unverifiable LM responses. These prompts form FactBench, a dataset of 985 prompts across 213 "
"fine-grained topics. Our dataset captures emerging factuality challenges in real-world LM interactions and is "
"regularly updated with new prompts."
)
st.markdown('
', unsafe_allow_html=True)
# Tab 3: Links
with tab3:
st.markdown('', unsafe_allow_html=True)
st.markdown('
Submit your model information on our Github
',
unsafe_allow_html=True)
st.markdown(
'[Test your model locally!](https://github.com/FarimaFatahi/FactEval)')
st.markdown(
'[Submit results or issues!](https://github.com/FarimaFatahi/FactEval/issues/new)')
st.markdown('
', unsafe_allow_html=True)