File size: 10,086 Bytes
b78a401
 
 
 
 
 
 
45ea86a
b78a401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45ea86a
 
b78a401
 
 
 
45ea86a
b78a401
 
45ea86a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78a401
45ea86a
b78a401
 
 
 
 
 
 
 
45ea86a
b78a401
 
45ea86a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78a401
 
 
 
 
 
45ea86a
b78a401
 
45ea86a
 
 
 
 
 
 
 
 
 
 
 
 
b78a401
 
 
 
 
 
 
45ea86a
 
 
 
 
 
 
 
 
b78a401
45ea86a
b78a401
 
45ea86a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78a401
 
 
45ea86a
b78a401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import streamlit as st
import pandas as pd
from PIL import Image

# Set up page config
st.set_page_config(
    page_title="FactBench Leaderboard",
    layout="wide",  # Layout remains wide, but content will be centered
)

# Load the image
image = Image.open("factEvalSteps.png")

# Custom CSS for the page
st.markdown(
    """
    <style>
    @import url('https://fonts.googleapis.com/css2?family=Courier+Prime:wght@400&display=swap');

    html, body, [class*="css"] {
        font-family: 'Courier Prime', monospace;
    }

    .title {
        font-size: 42px;
        font-weight: bold;
        text-align: center;
        color: #333;
        margin-bottom: 5px;
    }

    .description {
        font-size: 22px;
        text-align: center;
        margin-bottom: 30px;
        color: #555;
    }

    .container {
        max-width: 1000px;  /* Set a max-width for the container */
        margin: 0 auto;  /* Center the container */
        padding: 20px;
    }

    

    table {
        width: 100%;
        border-collapse: collapse;
        border-radius: 10px;
        overflow: hidden;
    }

    th, td {
        padding: 8px;
        text-align: center;
        border: 1px solid #ddd;
        font-size: 14px;
        transition: background-color 0.3s;
    }

    th {
        background-color: #f2f2f2;
        font-weight: bold;
    }

    td:hover {
        background-color: #eaeaea;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# Display title and description
st.markdown('<div class="container">', unsafe_allow_html=True)
st.markdown('<div class="title">FactBench</div>',
            unsafe_allow_html=True)
st.markdown('<div class="description">Benchmark for LM Factuality Evaluation</div>',
            unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)

# Load the data
# data_path = "factbench_data.csv"
data_path = "tiered_models_data.csv"
df = pd.read_csv(data_path)

# Create tabs
tab1, tab2, tab3 = st.tabs(
    ["Leaderboard", "Benchmark Details", "Submit your models"])

# Tab 1: Leaderboard
# with tab1:
#     st.markdown('<div class="title">Leaderboard</div>',
#                 unsafe_allow_html=True)
#     st.markdown('<div class="tab-content">', unsafe_allow_html=True)

#     # Dropdown menu to filter tiers
#     tiers = ['All Tiers', 'Tier 1: Easy', 'Tier 2: Moderate', 'Tier 3: Hard']
#     selected_tier = st.selectbox('Select Tier:', tiers)

#     # Filter the data based on the selected tier
#     if selected_tier != 'All Tiers':
#         filtered_df = df[df['Tier'] == selected_tier]
#     else:
#         filtered_df = df

#     # Create HTML for the table
#     html = '''
#     <table>
#         <thead>
#             <tr>
#                 <th>Tier</th>
#                 <th>Model</th>
#                 <th>FactScore</th>
#                 <th>SAFE</th>
#                 <th>Factcheck-GPT</th>
#                 <th>VERIFY</th>
#             </tr>
#         </thead>
#         <tbody>
#     '''

#     # Generate the rows of the table
#     current_tier = None
#     for i, row in filtered_df.iterrows():
#         if row['Tier'] != current_tier:
#             if current_tier is not None:
#                 # Close the previous tier row
#                 html += '    </tr>'
#             current_tier = row['Tier']
#             html += f'    <tr><td rowspan="4" style="vertical-align: middle;">{current_tier}</td>'
#         else:
#             html += '    <tr>'

#         # Fill in model and scores
#         html += f'''
#             <td>{row['Model']}</td>
#             <td>{row['FactScore']:.2f}</td>
#             <td>{row['SAFE']:.2f}</td>
#             <td>{row['Factcheck-GPT']:.2f}</td>
#             <td>{row['VERIFY']:.2f}</td>
#         </tr>
#     '''

#     # Close the last row and table tags
#     html += '''
#     </table>
#     '''

#     # Display the table
#     st.markdown(html, unsafe_allow_html=True)

#     st.markdown('</div>', unsafe_allow_html=True)
df['rank'] = df['factuality_score'].rank(
    ascending=False, method='min').astype(int)

with tab1:
    st.markdown('<div class="title">Leaderboard</div>', unsafe_allow_html=True)
    st.markdown('<div class="tab-content">', unsafe_allow_html=True)

    # Dropdown menu to filter tiers
    tiers = ['All Tiers', 'Tier 1: Easy', 'Tier 2: Moderate', 'Tier 3: Hard']
    selected_tier = st.selectbox('Select Tier:', tiers)

    # Filter the data based on the selected tier
    if selected_tier != 'All Tiers':
        filtered_df = df[df['tier'] == selected_tier]
    else:
        filtered_df = df
    # Add sorting functionality for Factuality Score
    # sort_order = st.radio('Sort by Factuality Score:',
    #                       ('Ascending', 'Descending'))

    # # Sort the dataframe based on Factuality Score
    # if sort_order == 'Ascending':
    #     filtered_df = filtered_df.sort_values(
    #         by='factuality_score', ascending=True)
    # else:
    #     filtered_df = filtered_df.sort_values(
    #         by='factuality_score', ascending=False)
    # Option to sort by Factuality Score in ascending order
    sort_by_factuality = st.checkbox('Sort by Factuality Score')

    # Sort the dataframe based on Factuality Score if the checkbox is selected
    if sort_by_factuality:
        updated_filtered_df = filtered_df.sort_values(
            by='factuality_score', ascending=False)
    else:
        updated_filtered_df = filtered_df

    # Create HTML for the table
    html = '''
    <table>
        <thead>
            <tr>
                <th>Rank</th>
                <th>Tier</th>
                <th>Model</th>
                <th>Factuality Score</th>
                <th>Hallucination Score</th>
                <th>Avg Tokens</th>
                <th>Avg Factual Units</th>
                <th>Avg Undecidable Units</th>
                <th>Avg Unsupported Units</th>
                <th>Factual Recall</th>
                <th>Conceptual Understanding</th>
                <th>Procedural Execution</th>
                <th>Comparative Analysis</th>
                <th>Recommendations and Insights</th>
                <th>Domain-Specific Knowledge</th>
                <th>Temporal Context</th>
            </tr>
        </thead>
        <tbody>
    '''

    # Generate the rows of the table
    current_tier = None
    for i, row in updated_filtered_df.iterrows():
        # if row['tier'] != current_tier:
        #     if current_tier is not None:
        #         html += '    </tr>'
        #     current_tier = row['tier']
        #     # 7 models, change this number when more models
        #     html += f'    <tr><td rowspan="7" style="vertical-align: middle;">{current_tier}</td>'
        # else:
        #     html += '    <tr>'

        html += '    <tr>'
        # Fill in model and scores
        html += f'''
            <td>{row['rank']}</td>
            <td>{row['tier']}</td>
            <td>{row['model']}</td>
            <td>{row['factuality_score']:.2f}</td>
            <td>{row['hallucination_score']:.2f}</td>
            <td>{row['avg_tokens']:.2f}</td>
            <td>{row['avg_factual_units']:.2f}</td>
            <td>{row['avg_undecidable_units']:.2f}</td>
            <td>{row['avg_unsupported_units']:.2f}</td>
            <td>{row['prompt_categories.Factual Recall']:.2f}</td>
            <td>{row['prompt_categories.Conceptual Understanding']:.2f}</td>
            <td>{row['prompt_categories.Procedural Execution']:.2f}</td>
            <td>{row['prompt_categories.Comparative Analysis']:.2f}</td>
            <td>{row['prompt_categories.Recommendations and Insights']:.2f}</td>
            <td>{row['prompt_categories.Domain-Specific Knowledge']:.2f}</td>
            <td>{row['prompt_categories.Temporal Context']:.2f}</td>
        </tr>
    '''

    # Close the table
    html += '''
    </table>
    '''

    # Display the table
    st.markdown(html, unsafe_allow_html=True)

    st.markdown('</div>', unsafe_allow_html=True)
# Tab 2: Details
with tab2:
    st.markdown('<div class="tab-content">', unsafe_allow_html=True)

    st.markdown('<div class="title">Benchmark Details</div>',
                unsafe_allow_html=True)
    st.image(image, use_column_width=True)

    st.markdown('### VERIFY: A Pipeline for Factuality Evaluation')
    st.write(
        "Language models (LMs) are widely used by an increasing number of users, "
        "underscoring the challenge of maintaining factual accuracy across a broad range of topics. "
        "We present VERIFY (Verification and Evidence Retrieval for Factuality evaluation), "
        "a pipeline to evaluate LMs' factual accuracy in real-world user interactions."
    )

    st.markdown('### Content Categorization')
    st.write(
        "VERIFY considers the verifiability of LM-generated content and categorizes content units as "
        "`supported`, `unsupported`, or `undecidable` based on the retrieved web evidence. "
        "Importantly, VERIFY's factuality judgments correlate better with human evaluations than existing methods."
    )

    st.markdown('### Hallucination Prompts & FactBench Dataset')
    st.write(
        "Using VERIFY, we identify 'hallucination prompts' across diverse topics—those eliciting the highest rates of "
        "incorrect or unverifiable LM responses. These prompts form FactBench, a dataset of 985 prompts across 213 "
        "fine-grained topics. Our dataset captures emerging factuality challenges in real-world LM interactions and is "
        "regularly updated with new prompts."
    )

    st.markdown('</div>', unsafe_allow_html=True)

# Tab 3: Links
with tab3:
    st.markdown('<div class="tab-content">', unsafe_allow_html=True)

    st.markdown('<div class="title">Submit your model information on our Github</div>',
                unsafe_allow_html=True)

    st.markdown(
        '[Test your model locally!](https://github.com/FarimaFatahi/FactEval)')
    st.markdown(
        '[Submit results or issues!](https://github.com/FarimaFatahi/FactEval/issues/new)')

    st.markdown('</div>', unsafe_allow_html=True)