File size: 11,446 Bytes
b78a401 0ae8f9d b78a401 1bda89d b78a401 88dddb9 b78a401 281eebf b78a401 0f0b38d e298385 b78a401 35382f2 3270a8d b78a401 d73147f 51ca0e2 b78a401 4e4fc61 a3ddd6b b78a401 0ae8f9d 298f2d4 51cb0a1 0ae8f9d d697d0c 51f5032 0ae8f9d 88dddb9 61e2b0b 3270a8d 0f0b38d 6e31cea 0f0b38d f885102 3270a8d 88dddb9 3270a8d e31c2a8 b78a401 45ea86a b78a401 d73147f b78a401 30946c3 eb712f6 4e4fc61 b78a401 d73147f b02e35d 63d4bdd b78a401 6f97145 1f646d8 35382f2 19d12aa 35382f2 0eb74e9 19d12aa 35382f2 19d12aa 1f646d8 19d12aa d33883f b78a401 d73147f b78a401 45ea86a b78a401 45ea86a d73147f 45ea86a d73147f b78a401 d73147f 6355ff9 36a6473 d73147f 6355ff9 36a6473 d73147f b78a401 45ea86a d73147f b78a401 45ea86a d73147f 45ea86a b78a401 45ea86a b78a401 d73147f b78a401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import streamlit as st
import pandas as pd
from PIL import Image
import base64
from io import BytesIO
# Set up page config
st.set_page_config(
page_title="FactBench Leaderboard",
layout="wide"
)
# load header
with open("_header.md", "r") as f:
HEADER_MD = f.read()
# Load the image
image = Image.open("factEvalSteps.png")
logo_image = Image.open("Factbench_logo.png")
# Custom CSS for the page
st.markdown(
"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Courier+Prime:wght@400&display=swap');
html, body, [class*="css"] {
font-family: 'Arial', sans-serif; /* or use a similar sans-serif font */
background-color: #f9f9f9; /* Light grey background */
}
.title {
font-size: 42px;
font-weight: bold;
text-align: center;
color: #333;
margin-bottom: 5px;
}
.description {
font-size: 22px;
text-align: center;
margin-bottom: 30px;
color: #555;
}
.header, .metric {
align-items: left;
font-family: 'Arial', sans-serif; /* or use a similar sans-serif font */
margin-bottom: 20px;
}
.container {
max-width: 1000px;
margin: 0 auto;
padding: 5px;
}
table {
width: 100%;
border-collapse: collapse;
border-radius: 10px;
overflow: hidden;
}
th, td {
padding: 8px;
text-align: center;
border: 1px solid #ddd;
font-family: 'Arial', sans-serif; /* or use a similar sans-serif font */
font-size: 16px;
transition: background-color 0.3s;
}
th {
background-color: #f2f2f2;
font-weight: bold;
}
td:hover {
background-color: #eaeaea;
}
</style>
""",
unsafe_allow_html=True
)
# Display title and description
st.markdown('<div class="container">', unsafe_allow_html=True)
# st.image(logo_image, output_format="PNG", width=200)
# Convert the image to base64
buffered = BytesIO()
logo_image.save(buffered, format="PNG")
img_data = base64.b64encode(buffered.getvalue()).decode("utf-8")
st.markdown(
f"""
<style>
.logo-container {{
display: flex;
justify-content: flex-start; /* Aligns to the left */
}}
.logo-container img {{
width: 50%; /* Adjust this to control the width, e.g., 50% of container width */
margin: 0 auto;
max-width: 700px; /* Set a maximum width */
background-color: transparent;
}}
</style>
<div class="logo-container">
<img src="data:image/png;base64,{img_data}" alt="FactBench Leaderboard Logo">
</div>
""",
unsafe_allow_html=True
)
# header_md_text = HEADER_MD # make some parameters later
# gr.Markdown(header_md_text, elem_classes="markdown-text")
st.markdown(
'''
<div class="header">
<br/>
<p style="font-size:22px;">
π FactBench: A Dynamic Benchmark for In-the-Wild Language Model Factuality Evaluation
</p>
<p style="font-size:20px;">
π <a href="#">Paper</a> | π» <a href="https://github.com/launchnlp/FactBench">GitHub</a> | π€ <a href="https://huggingface.co/datasets/launch/FactBench">HuggingFace</a> | π¦ <a href="#">X</a> | π¬ <a href="#">Discussion</a> |
βοΈ <strong>Version</strong>: <strong>V1</strong> | <strong># Models</strong>: 7 | Updated: <strong>10/26/2024</strong>
</p>
</div>
''',
unsafe_allow_html=True
)
# st.markdown('<div class="title">FactBench Leaderboard</div>',
# unsafe_allow_html=True)
# st.markdown('<div class="description">Benchmark for LM Factuality Evaluation</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Load the data
data_path = "tiered_models_data.csv"
df = pd.read_csv(data_path)
# Assign ranks within each tier based on factuality_score
df['rank'] = df.groupby('tier')['factuality_score'].rank(
ascending=False, method='min').astype(int)
# Replace NaN values with '-'
df.fillna('-', inplace=True)
df['original_order'] = df.groupby('tier').cumcount()
# Create tabs
st.markdown("""
<style>
.stTabs [data-baseweb="tab-list"] button [data-testid="stMarkdownContainer"] p {
font-size: 20px;
}
</style>
""", unsafe_allow_html=True)
tab1, tab2, tab3 = st.tabs(["Leaderboard", "Benchmark Details", "Submit your models"])
# Tab 1: Leaderboard
with tab1:
# df['original_order'] = df.groupby('tier').cumcount()
# print(df['original_order'])
# st.markdown('<div class="title">Leaderboard</div>', unsafe_allow_html=True)
st.markdown('<div class="tab-content">', unsafe_allow_html=True)
st.markdown("""
<div class="metric" style="font-size:20px; font-weight: bold;">
Metrics Explanation
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div class="metric" style="font-size:16px;">
<br/>
<p>
<strong> π― Factual Precision </strong> measures the ratio of supported units divided by all units averaged over model responses. <strong> π Hallucination Score </strong> quantifies the incorrect or inconclusive contents within a model response, as described in the paper. We also provide statistics on the average length of the response in terms of the number of tokens, the average verifiable units existing in the model responses (<strong>Avg. # Units</strong>), the average number of units labelled as undecidable (<strong>Avg. # Undecided</strong>), and the average number of units labelled as unsupported (<strong>Avg. # Unsupported</strong>).
</p>
<p>
π for closed LLMs; π for open-weights LLMs; π¨ for newly added models"
</p>
</div>
""",
unsafe_allow_html=True
)
st.markdown("""
<style>
/* Selectbox text */
div[data-baseweb="select"] > div {
font-size: 20px;
}
/* Dropdown options */
div[role="listbox"] ul li {
font-size: 20px !important;
}
/* Checkbox label */
.stCheckbox label p {
font-size: 20px !important;
}
/* Selectbox label */
.stSelectbox label p {
font-size: 20px !important;
}
</style>
""", unsafe_allow_html=True)
# Dropdown menu to filter tiers
tiers = ['All Tiers', 'Tier 1: Hard', 'Tier 2: Moderate', 'Tier 3: Easy']
selected_tier = st.selectbox('Select Tier:', tiers)
# Filter the data based on the selected tier
if selected_tier != 'All Tiers':
filtered_df = df[df['tier'] == selected_tier]
else:
filtered_df = df
sort_by_factuality = st.checkbox('Sort by Factuality Score')
# Sort the dataframe based on Factuality Score if the checkbox is selected
if sort_by_factuality:
updated_filtered_df = filtered_df.sort_values(
by=['tier', 'factuality_score'], ascending=[True, False]
)
else:
updated_filtered_df = filtered_df.sort_values(
by=['tier', 'original_order']
)
# Create HTML for the table
if selected_tier == 'All Tiers':
html = '''
<table>
<thead>
<tr>
<th>Tier</th>
<th>Rank</th>
<th>Model</th>
<th>π― Factual Precision</th>
<th>π Hallucination Score</th>
<th>Avg. # Tokens</th>
<th>Avg. # Units</th>
<th>Avg. # Undecidable</th>
<th>Avg. # Unsupported</th>
</tr>
</thead>
<tbody>
'''
else:
html = '''
<table>
<thead>
<tr>
<th>Rank</th>
<th>Model</th>
<th>π― Factual Precision</th>
<th>π Hallucination Score</th>
<th>Avg. # Tokens</th>
<th>Avg. # Units</th>
<th>Avg. # Undecidable</th>
<th>Avg. # Unsupported</th>
</tr>
</thead>
<tbody>
'''
# Generate the rows of the table
current_tier = None
for i, row in updated_filtered_df.iterrows():
html += '<tr>'
# Only display the 'Tier' column if 'All Tiers' is selected
if selected_tier == 'All Tiers':
if row['tier'] != current_tier:
current_tier = row['tier']
html += f'<td rowspan="7" style="vertical-align: middle;">{current_tier}</td>'
# Fill in model and scores
html += f'''
<td>{row['rank']}</td>
<td>{row['model']}</td>
<td>{row['factuality_score']}</td>
<td>{row['hallucination_score']}</td>
<td>{row['avg_tokens']}</td>
<td>{row['avg_factual_units']}</td>
<td>{row['avg_undecidable_units']:.2f}</td>
<td>{row['avg_unsupported_units']:.2f}</td>
</tr>
'''
# Close the table
html += '''
</table>
'''
# Display the table
st.markdown(html, unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Tab 2: Details
with tab2:
st.markdown('<div class="tab-content">', unsafe_allow_html=True)
st.markdown('<div class="title">Benchmark Details</div>',
unsafe_allow_html=True)
st.image(image, use_column_width=True)
st.markdown('### VERIFY: A Pipeline for Factuality Evaluation')
st.write(
"Language models (LMs) are widely used by an increasing number of users, "
"underscoring the challenge of maintaining factual accuracy across a broad range of topics. "
"We present VERIFY (Verification and Evidence Retrieval for Factuality evaluation), "
"a pipeline to evaluate LMs' factual accuracy in real-world user interactions."
)
st.markdown('### Content Categorization')
st.write(
"VERIFY considers the verifiability of LM-generated content and categorizes content units as "
"`supported`, `unsupported`, or `undecidable` based on the retrieved web evidence. "
"Importantly, VERIFY's factuality judgments correlate better with human evaluations than existing methods."
)
st.markdown('### Hallucination Prompts & FactBench Dataset')
st.write(
"Using VERIFY, we identify 'hallucination prompts' across diverse topicsβthose eliciting the highest rates of "
"incorrect or unverifiable LM responses. These prompts form FactBench, a dataset of 985 prompts across 213 "
"fine-grained topics. Our dataset captures emerging factuality challenges in real-world LM interactions and is "
"regularly updated with new prompts."
)
st.markdown('</div>', unsafe_allow_html=True)
# Tab 3: Links
with tab3:
st.markdown('<div class="tab-content">', unsafe_allow_html=True)
st.markdown('<div class="title">Submit your model information on our Github</div>',
unsafe_allow_html=True)
st.markdown(
'[Test your model locally!](https://github.com/FarimaFatahi/FactEval)')
st.markdown(
'[Submit results or issues!](https://github.com/FarimaFatahi/FactEval/issues/new)')
st.markdown('</div>', unsafe_allow_html=True)
|