Spaces:
Sleeping
Sleeping
Upload 10 files
Browse files- .gitattributes +1 -0
- app.py +19 -0
- app_details.py +20 -0
- docs/dar_normas_academicas.txt +0 -0
- docs/posgraduacao_stritosensu_regulamento.txt +0 -0
- documents_names.json +3 -0
- embeddings.py +56 -0
- embeddings/embeddings.xlsx +3 -0
- functions.py +116 -0
- gradio.json +16 -0
- requirements.txt +11 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
embeddings/embeddings.xlsx filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import functions as fn
|
3 |
+
import json
|
4 |
+
|
5 |
+
data = fn.load_embeddings()
|
6 |
+
num_documents = data['num_documents']
|
7 |
+
num_segment_contents = data['num_segment_contents']
|
8 |
+
|
9 |
+
with open("gradio.json", encoding='utf-8') as f:
|
10 |
+
config = json.load(f)
|
11 |
+
config['description'] = config['description'].format(num_documents=num_documents, num_segment_contents=num_segment_contents)
|
12 |
+
|
13 |
+
def on_submit(query, history):
|
14 |
+
response = fn.rag_response(query, data=data, detailed_response=False)
|
15 |
+
return gr.HTML(response.replace("\n", "<br>"))
|
16 |
+
|
17 |
+
demo = gr.ChatInterface(fn=on_submit, **config)
|
18 |
+
|
19 |
+
demo.launch()
|
app_details.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import functions as fn
|
3 |
+
import json
|
4 |
+
|
5 |
+
data = fn.load_embeddings()
|
6 |
+
num_documents = data['num_documents']
|
7 |
+
num_segment_contents = data['num_segment_contents']
|
8 |
+
|
9 |
+
with open("gradio.json") as f:
|
10 |
+
config = json.load(f)
|
11 |
+
config['description'] = config['description'].format(num_documents=num_documents, num_segment_contents=num_segment_contents)
|
12 |
+
config['title'] += " - Interface de Respostas Detalhadas"
|
13 |
+
|
14 |
+
def on_submit(query, history):
|
15 |
+
response = fn.rag_response(query, data=data, detailed_response=True)
|
16 |
+
return gr.HTML(response.replace("\n", "<br>"))
|
17 |
+
|
18 |
+
demo = gr.ChatInterface(fn=on_submit, **config)
|
19 |
+
|
20 |
+
demo.launch()
|
docs/dar_normas_academicas.txt
ADDED
Binary file (262 kB). View file
|
|
docs/posgraduacao_stritosensu_regulamento.txt
ADDED
Binary file (98.5 kB). View file
|
|
documents_names.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{ "dar_normas_academicas.txt": ["DAR - Normas Acadêmicas", "https://www.puc-rio.br/sobrepuc/depto/dar/download/dar_normas_academicas.pdf"],
|
2 |
+
"posgraduacao_stritosensu_regulamento.txt": ["Regulamento dos Programas de Pós-Graduação da PUC-Rio", "https://www.puc-rio.br/ensinopesq/ccpg/download/posgraduacao_stritosensu_regulamento.pdf"]
|
3 |
+
}
|
embeddings.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import glob
|
6 |
+
import torch
|
7 |
+
import pandas as pd
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
|
11 |
+
sys.path.append(parent_dir)
|
12 |
+
|
13 |
+
import functions as fn
|
14 |
+
|
15 |
+
def get_embeddings(chunk_size, chunk_overlap, model_name, input_path='docs/*.txt', output_path='embeddings/embeddings.xlsx'):
|
16 |
+
|
17 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
18 |
+
chunk_size=chunk_size,
|
19 |
+
chunk_overlap=chunk_overlap,
|
20 |
+
length_function=len,
|
21 |
+
is_separator_regex=False,
|
22 |
+
)
|
23 |
+
|
24 |
+
all_splitted_text = []
|
25 |
+
file_names = []
|
26 |
+
|
27 |
+
for file in glob.glob(input_path):
|
28 |
+
text = fn.load_text(file)
|
29 |
+
splitted_text = text_splitter.create_documents([text])
|
30 |
+
all_splitted_text.extend(splitted_text)
|
31 |
+
file_names.extend([os.path.basename(file)] * len(splitted_text))
|
32 |
+
|
33 |
+
model = SentenceTransformer(model_name)
|
34 |
+
|
35 |
+
embeddings_list = []
|
36 |
+
content_list = []
|
37 |
+
file_name_list = []
|
38 |
+
model_name_list = []
|
39 |
+
|
40 |
+
for segment, file_name in tqdm(zip(all_splitted_text, file_names), desc="Procesando segmentos"):
|
41 |
+
embeddings = model.encode(segment.page_content)
|
42 |
+
embeddings_list.append(embeddings)
|
43 |
+
content_list.append(segment.page_content)
|
44 |
+
file_name_list.append(file_name)
|
45 |
+
model_name_list.append(model_name)
|
46 |
+
|
47 |
+
embeddings_df = pd.DataFrame(embeddings_list)
|
48 |
+
embeddings_df['segment_content'] = content_list
|
49 |
+
embeddings_df['file_name'] = file_name_list
|
50 |
+
embeddings_df['model_name'] = model_name_list
|
51 |
+
|
52 |
+
embeddings_df.to_excel(output_path, index=False)
|
53 |
+
|
54 |
+
if __name__ == "__main__":
|
55 |
+
current_dir = os.getcwd()
|
56 |
+
get_embeddings(chunk_size=512, chunk_overlap=100, model_name='intfloat/multilingual-e5-large')
|
embeddings/embeddings.xlsx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03f5000178f061609ae23a245440a8cd7638769dbc9ee642b25f413b7c088664
|
3 |
+
size 7187184
|
functions.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import chardet
|
2 |
+
import torch
|
3 |
+
from langchain_openai import ChatOpenAI, OpenAI
|
4 |
+
from langchain_core.prompts import PromptTemplate
|
5 |
+
from langchain.prompts import PromptTemplate
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
import os
|
8 |
+
import pandas as pd
|
9 |
+
import json
|
10 |
+
|
11 |
+
current_dir = os.getcwd()
|
12 |
+
|
13 |
+
def load_api_key(file_path):
|
14 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
15 |
+
data = json.load(file)
|
16 |
+
return data.get('api_key')
|
17 |
+
|
18 |
+
def load_dictionary(json_path):
|
19 |
+
with open(json_path, 'r', encoding='utf-8') as file:
|
20 |
+
return json.load(file)
|
21 |
+
|
22 |
+
def detect_encoding(file_path):
|
23 |
+
with open(file_path, 'rb') as file:
|
24 |
+
raw_data = file.read()
|
25 |
+
result = chardet.detect(raw_data)
|
26 |
+
return result['encoding']
|
27 |
+
|
28 |
+
def load_text(file_path):
|
29 |
+
encoding = detect_encoding(file_path)
|
30 |
+
with open(file_path, 'r', encoding=encoding) as file:
|
31 |
+
return file.read()
|
32 |
+
|
33 |
+
def search_query(query, embeddings_tensor, model, segment_contents, file_names, k=5):
|
34 |
+
query_embedding = torch.tensor(model.encode(query)).unsqueeze(0)
|
35 |
+
similarities = torch.mm(query_embedding, embeddings_tensor.t()).squeeze(0)
|
36 |
+
topk_similarities, topk_indices = torch.topk(similarities, k)
|
37 |
+
|
38 |
+
top_segments = [segment_contents[idx] for idx in topk_indices]
|
39 |
+
top_file_names = [file_names[idx] for idx in topk_indices]
|
40 |
+
top_similarities = topk_similarities.tolist()
|
41 |
+
|
42 |
+
return top_segments, top_file_names, top_similarities
|
43 |
+
|
44 |
+
def load_embeddings(file_path="embeddings/embeddings.xlsx"):
|
45 |
+
embeddings_df = pd.read_excel(os.path.join(current_dir, file_path))
|
46 |
+
embeddings = embeddings_df.iloc[:, :-3].values
|
47 |
+
segment_contents = embeddings_df['segment_content'].values
|
48 |
+
num_segment_contents = len(segment_contents)
|
49 |
+
num_documents = embeddings_df['file_name'].nunique()
|
50 |
+
file_names = embeddings_df['file_name'].values
|
51 |
+
model_name = embeddings_df['model_name'].values[0]
|
52 |
+
|
53 |
+
return {
|
54 |
+
"embeddings": embeddings,
|
55 |
+
"segment_contents": segment_contents,
|
56 |
+
"num_documents": num_documents,
|
57 |
+
"num_segment_contents": num_segment_contents,
|
58 |
+
"file_names": file_names,
|
59 |
+
"model_name": model_name,
|
60 |
+
}
|
61 |
+
|
62 |
+
def generate_answer_with_references(query, data):
|
63 |
+
embeddings = data["embeddings"]
|
64 |
+
segment_contents = data["segment_contents"]
|
65 |
+
model_name = data["model_name"]
|
66 |
+
file_names = data["file_names"]
|
67 |
+
embeddings_tensor = torch.tensor(embeddings, dtype=torch.float32)
|
68 |
+
model = SentenceTransformer(model_name)
|
69 |
+
dictionary_path = os.path.join(current_dir, 'documents_names.json')
|
70 |
+
file_name_dict = load_dictionary(dictionary_path)
|
71 |
+
file_names = [file_name_dict.get(name, name) for name in file_names]
|
72 |
+
|
73 |
+
top_segments, top_file_names, top_similarities = search_query(query, embeddings_tensor, model, segment_contents, file_names, k=5)
|
74 |
+
context = "\n----\n".join(top_segments)
|
75 |
+
prompt_template = """
|
76 |
+
Você é um assistente de inteligência artificial que responde a perguntas baseadas nos documentos de forma detalhada na forma culta da língua portuguesa.
|
77 |
+
Não é possível gerar informações ou fornecer informações que não estejam contidas nos documentos recuperados.
|
78 |
+
Se a informação não se encontra nos documentos, responda com: Não foi possível encontrar a informação requerida nos documentos.
|
79 |
+
|
80 |
+
Contexto:
|
81 |
+
|
82 |
+
{context}
|
83 |
+
|
84 |
+
Pergunta: {query}
|
85 |
+
|
86 |
+
Resposta:""".format(context=context, query=query)
|
87 |
+
|
88 |
+
qa_prompt = PromptTemplate.from_template(prompt_template)
|
89 |
+
api_key = load_api_key('api_key.json')
|
90 |
+
|
91 |
+
llm = ChatOpenAI(api_key=api_key, model="gpt-3.5-turbo")
|
92 |
+
response = llm.invoke(qa_prompt.template)
|
93 |
+
resposta = response.content
|
94 |
+
total_tokens = response.response_metadata['token_usage']['total_tokens']
|
95 |
+
prompt_tokens = response.response_metadata['token_usage']['prompt_tokens']
|
96 |
+
|
97 |
+
return resposta, total_tokens, prompt_tokens, top_segments, top_file_names, top_similarities, prompt_template
|
98 |
+
|
99 |
+
def rag_response(query, data, detailed_response):
|
100 |
+
resposta, total_tokens, prompt_tokens, top_segments, top_file_names, top_similarities, prompt_template = generate_answer_with_references(query, data)
|
101 |
+
file_names = [x[0] for x in top_file_names]
|
102 |
+
file_links = {x[0]: x[1] for x in top_file_names}
|
103 |
+
|
104 |
+
if detailed_response==True:
|
105 |
+
references_detail = "\n\n".join([
|
106 |
+
f"* Segmento: {segment}\nArquivo: <a href='{file_links[file_name]}' target='_blank'>{file_name}</a>\nSimilaridade: {similarity:.4f}"
|
107 |
+
for segment, file_name, similarity in zip(top_segments, file_names, top_similarities)])
|
108 |
+
|
109 |
+
formatted_detailed_response = f"Resposta:\n\n{resposta}\n\nPrompt:\n{prompt_template}\n\nPrompt Tokens: {prompt_tokens}\nTotal Tokens: {total_tokens}\n\n{references_detail}"
|
110 |
+
|
111 |
+
return formatted_detailed_response
|
112 |
+
else:
|
113 |
+
file_set = set(file_name for file_name in file_names)
|
114 |
+
references = "\n".join("<a href='{}' target='_blank'>{}</a>".format(file_links[file_name], file_name) for file_name in file_set)
|
115 |
+
formatted_response = f"{resposta}\n\n----\n{references}"
|
116 |
+
return formatted_response
|
gradio.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"title": "Chatbot PUC-Rio",
|
3 |
+
"description": "<center>O assistente tem acesso a {num_documents} documentos ({num_segment_contents} parágrafos)</center>",
|
4 |
+
"examples": [
|
5 |
+
["Quando deve ser renovada a matrícula?"],
|
6 |
+
["O que é o histórico escolar?"], ["Como posso virar aluno da PUC-Rio?"],
|
7 |
+
["Quais são os requisitos de proficiência linguística para os alunos de mestrado no programa?"],
|
8 |
+
["Como faço para cancelar uma disciplina?"], ["A PUC-Rio tem curso de medicina?"]
|
9 |
+
],
|
10 |
+
"theme": "gradio/default",
|
11 |
+
"submit_btn": "Enviar",
|
12 |
+
"stop_btn": "Parar",
|
13 |
+
"retry_btn": "🔄 Tentar novamente",
|
14 |
+
"undo_btn": "↩️ Desfazer",
|
15 |
+
"clear_btn": "🗑️ Limpar"
|
16 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
chardet==5.2.0
|
2 |
+
torch==2.3.0
|
3 |
+
langchain_text_splitters
|
4 |
+
sentence-transformers==3.0.1
|
5 |
+
pandas
|
6 |
+
tqdm
|
7 |
+
openpyxl
|
8 |
+
gradio==4.37.1
|
9 |
+
langchain-openai
|
10 |
+
langchain-core
|
11 |
+
langchain
|