Spaces:
Runtime error
Runtime error
File size: 9,494 Bytes
a6d925a 3e1ba39 a6d925a 8330b1d 3e1ba39 a6d925a 3e1ba39 a6d925a e57b2b0 3e1ba39 a6d925a 3e1ba39 a6d925a 02e0932 3e1ba39 02e0932 3e1ba39 a6d925a 3e1ba39 a6d925a 3e1ba39 a6d925a 8330b1d a6d925a 8330b1d a6d925a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import gradio as gr
import torch
import numpy as np
import pandas as pd
import pickle
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import hf_hub_download
import requests
import os
import msgpack_numpy as m
import plotly.graph_objs as go
from sklearn.linear_model import LogisticRegression
torch.set_grad_enabled(False) # avoid blowing up mem
DEFAULT_EXAMPLE = text = "I really wished I could give this movie a higher rating. The plot was interesting, but the acting was terrible. The special effects were great, but the pacing was off. The movie was too long, but the ending was satisfying."
params = {
"model_name" : "google/gemma-2-9b-it",
"width" : "16k",
"layer" : 31,
"l0" : 76,
"sae_repo_id": "google/gemma-scope-9b-it-res",
"filename" : "layer_31/width_16k/average_l0_76/params.npz"
}
title = """
<div class='parent' align="center">
<div class='child' style="display: inline-block !important; margin-bottom: 20px;">
<h1 style="margin-bottom: 30px;">🔍Interpretable Classifier for movie ratings using Gemma 2 with SAEs</h1>
</div>
</div>
<div class='parent' align="center">
<p>This space demonstrates how a linear classifier trained on top of features learned by Sparse Auto Encoders (SAEs) can be used to create interpretable natural language classifiers.</p>
<p>We leverage the interpretability API of <b>Neuronpedia</b> to provide more information about the features used by the LLM (like what tokens activate it the most and their distribution).</p>
<p><b>More resources on interpretability for LLMs using SAEs:</b></p>
</div>
<ul>
<li><a href="https://transformer-circuits.pub/2024/scaling-monosemanticity/">Anthropic: Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet</a></li>
<li><a href="https://blog.eleuther.ai/autointerp/">EleutherAI: Open Source Automated Interpretability for Sparse Autoencoder Features</a></li>
<li><a href="https://www.gemma.ai/gemma-scope">Gemma Scope: Open Sparse Autoencoders Everywhere All At Once on Gemma 2</a></li>
</ul>
<div class='parent' align="center">
<p>About us: <b> 🌊 LaVague</b> is an open-source framework to build AI Web Agents. Check out our <a href="https://github.com/lavague-ai/LaVague">GitHub</a> or join our <a href="https://discord.com/invite/SDxn9KpqX9">Discord</a>.</p>
</div>
"""
css = """
.my-button {
height: 100px; /* Increase the height of the buttons */
width: 100%; /* Make sure the button takes the full width */
max-width: 300px; /* Optional: set a max width */
max-height: 80px;
font-size: 1.1rem; /* Increase font size */
}
.button-container {
display: flex;
justify-content: center; /* Center buttons horizontally */
align-items: center; /* Center buttons vertically */
height: 100%; /* Ensure it takes up the full height */
width: 100%; /* Ensure it takes up the full width */
}
"""
C = 0.01
model_name = params["model_name"]
width = params["width"]
layer = params["layer"]
l0 = params["l0"]
sae_repo_id = params["sae_repo_id"]
filename = params["filename"]
path_to_params = hf_hub_download(
repo_id=sae_repo_id,
filename=filename,
force_download=False,
token=os.environ['TOKEN'],
)
tokenizer = AutoTokenizer.from_pretrained(model_name, token=os.environ['TOKEN'])
params = np.load(path_to_params)
pt_params = {k: torch.from_numpy(v) for k, v in params.items()}
clf_name = f"linear_classifier_C_{C}_ "+ model_name + "_" + filename.split(".npz")[0]
clf_name = clf_name.replace(os.sep, "_")
with open(f"{clf_name}.pkl", 'rb') as model_file:
clf: LogisticRegression = pickle.load(model_file)
def get_feature_descriptions(feature):
layer_name = f"{layer}-gemmascope-res-{width}"
model_name_neuronpedia = model_name.split("/")[1]
url = f"https://www.neuronpedia.org/api/feature/{model_name_neuronpedia}/{layer_name}/{feature}"
response = requests.get(url)
output = response.json()["explanations"][0]["description"]
return output
def embed_content(url):
html_content = f"""
<div style="width:100%; height:500px; overflow:hidden;">
<iframe src="{url}" width="100%" height="100%" frameborder="0"></iframe>
</div>
"""
return html_content
def dummy_function(*args):
# This is a placeholder function. Replace with your actual logic.
return "Scores will be displayed here"
examples = [
"Despite moments of promise, this film ultimately falls short of its potential. The premise intrigues, offering a fresh take on a familiar genre, but the execution stumbles in crucial areas",
]
topk = 5
# Function to wrap in a FastAPI in case of
def get_activations(text):
response = requests.post("http://34.71.249.22:3000/execute_req", json={"query": text})
pack = m.unpackb(response.content)
sae_act = torch.from_numpy(pack["sae_act"]).to(dtype=torch.bfloat16)
return sae_act
def get_features(text):
sae_act = get_activations(text)
sae_act_aggregated = ((sae_act[:,:,:] > 0).sum(1) > 0).numpy()
X = pd.DataFrame(sae_act_aggregated)
feature_contributions = X.iloc[0].astype(float).values * clf.coef_[0]
contrib_df = pd.DataFrame({
'feature': range(len(feature_contributions)),
'contribution': feature_contributions
})
contrib_df = contrib_df.loc[contrib_df['contribution'].abs() > 0]
# Sort by absolute contribution and get top N
contrib_df = contrib_df.reindex(contrib_df['contribution'].abs().sort_values(ascending=False).index)
contrib_df = contrib_df.head(topk)
descriptions = []
for feature in contrib_df["feature"]:
description = get_feature_descriptions(feature)
print(description)
descriptions.append(description)
contrib_df["description"] = descriptions
fig = go.Figure(go.Bar(
x=contrib_df['contribution'],
y=contrib_df['description'],
orientation='h' # Horizontal bar chart
))
fig.update_layout(
title='Feature contribution',
xaxis_title='Contribution',
yaxis_title='Features',
height=500,
margin=dict(l=200) # Increase left margin to accommodate longer feature names
)
fig.update_yaxes(autorange="reversed")
probability = clf.predict_proba(X)[0]
classes = {
"Positive": probability[1],
"Negative": probability[0]
}
choices = [(description, feature) for description, feature in zip(contrib_df["description"], contrib_df["feature"])]
dropdown = gr.Dropdown(choices=choices,
value=choices[0][1],
interactive=True, label="Features")
return classes, fig, dropdown
def get_highlighted_text(text, feature):
inputs = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
sae_act = get_activations(text)
activated_tokens = sae_act[0:,:,feature]
max_activation = activated_tokens.max().item()
activated_tokens /= max_activation
activated_tokens = activated_tokens.float().numpy()
output = []
for i, token_id in enumerate(inputs[0, :]):
token = tokenizer.decode(token_id)
output.append((token, activated_tokens[0, i]))
return output
def get_feature_iframe(feature):
layer_name = f"{layer}-gemmascope-res-{width}"
model_name_neuronpedia = model_name.split("/")[1]
url = f"https://neuronpedia.org/{model_name_neuronpedia}/{layer_name}/{feature}?embed=true"
html_content = embed_content(url)
html = gr.HTML(html_content)
return html
with gr.Blocks(gr.themes.Default(primary_hue="blue", secondary_hue="neutral"), css=css) as demo:
with gr.Tab(""):
with gr.Row():
gr.HTML(title)
with gr.Row():
with gr.Column(scale=4):
input_text = gr.Textbox(label="Input", show_label=False, value=DEFAULT_EXAMPLE)
gr.Examples(
examples=examples,
inputs=input_text,
)
with gr.Column(scale=1):
run_button = gr.Button("Run")
with gr.Row():
label = gr.Label(label="Scores")
with gr.Row():
with gr.Column(scale=1):
plot = gr.Plot(label="Plot")
dropdown = gr.Dropdown(choices=["Option 1"], label="Features")
with gr.Column(scale=1):
highlighted_text = gr.HighlightedText(
label="Activating Tokens",
combine_adjacent=True,
show_legend=True,
color_map={"+": "red", "-": "green"})
with gr.Row():
html = gr.HTML()
# Connect the components
run_button.click(
fn=get_features,
inputs=[input_text],
outputs=[label, plot, dropdown],
).then(
fn=get_highlighted_text,
inputs=[input_text, dropdown],
outputs=[highlighted_text]
).then(
fn=get_feature_iframe,
inputs=[dropdown],
outputs=[html]
)
dropdown.change(
fn=get_highlighted_text,
inputs=[input_text, dropdown],
outputs=[highlighted_text]
).then(
fn=get_feature_iframe,
inputs=[dropdown],
outputs=[html]
)
demo.launch(share=True) |