dhuynh95's picture
Upload 2 files
a6d925a verified
raw
history blame
8.59 kB
import gradio as gr
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import hf_hub_download
import numpy as np
import torch
import pickle
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
torch.set_grad_enabled(False) # avoid blowing up mem
DEFAULT_EXAMPLE = text = "I really wished I could give this movie a higher rating. The plot was interesting, but the acting was terrible. The special effects were great, but the pacing was off. The movie was too long, but the ending was satisfying."
params = {
"model_name" : "google/gemma-2-9b-it",
"width" : "16k",
"layer" : 31,
"l0" : 76,
"sae_repo_id": "google/gemma-scope-9b-it-res",
"filename" : "layer_31/width_16k/average_l0_76/params.npz"
}
model_name = params["model_name"]
width = params["width"]
layer = params["layer"]
l0 = params["l0"]
sae_repo_id = params["sae_repo_id"]
filename = params["filename"]
C = 0.01
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map='auto',
torch_dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
path_to_params = hf_hub_download(
repo_id=sae_repo_id,
filename=filename,
force_download=False,
)
params = np.load(path_to_params)
pt_params = {k: torch.from_numpy(v).cuda() for k, v in params.items()}
clf_name = f"linear_classifier_C_{C}_ "+ model_name + "_" + filename.split(".npz")[0]
clf_name = clf_name.replace(os.sep, "_")
with open(f"{clf_name}.pkl", 'rb') as model_file:
clf: LogisticRegression = pickle.load(model_file)
import torch.nn as nn
class JumpReLUSAE(nn.Module):
def __init__(self, d_model, d_sae):
# Note that we initialise these to zeros because we're loading in pre-trained weights.
# If you want to train your own SAEs then we recommend using blah
super().__init__()
self.W_enc = nn.Parameter(torch.zeros(d_model, d_sae))
self.W_dec = nn.Parameter(torch.zeros(d_sae, d_model))
self.threshold = nn.Parameter(torch.zeros(d_sae))
self.b_enc = nn.Parameter(torch.zeros(d_sae))
self.b_dec = nn.Parameter(torch.zeros(d_model))
def encode(self, input_acts):
pre_acts = input_acts @ self.W_enc + self.b_enc
mask = (pre_acts > self.threshold)
acts = mask * torch.nn.functional.relu(pre_acts)
return acts
def decode(self, acts):
return acts @ self.W_dec + self.b_dec
def forward(self, acts):
acts = self.encode(acts)
recon = self.decode(acts)
return recon
sae = JumpReLUSAE(params['W_enc'].shape[0], params['W_enc'].shape[1])
sae.load_state_dict(pt_params)
sae.to(dtype=torch.bfloat16).cuda()
@torch.no_grad()
def gather_residual_activations(model, target_layer, inputs):
target_act = None
def gather_target_act_hook(mod, inputs, outputs):
nonlocal target_act # make sure we can modify the target_act from the outer scope
target_act = outputs[0]
return outputs
handle = model.model.layers[target_layer].register_forward_hook(gather_target_act_hook)
_ = model.forward(inputs)
handle.remove()
return target_act
import requests
def get_feature_descriptions(feature):
layer_name = f"{layer}-gemmascope-res-{width}"
model_name_neuronpedia = model_name.split("/")[1]
url = f"https://www.neuronpedia.org/api/feature/{model_name_neuronpedia}/{layer_name}/{feature}"
response = requests.get(url)
output = response.json()["explanations"][0]["description"]
return output
def embed_content(url):
html_content = f"""
<div style="width:100%; height:500px; overflow:hidden;">
<iframe src="{url}" width="100%" height="100%" frameborder="0"></iframe>
</div>
"""
return html_content
def dummy_function(*args):
# This is a placeholder function. Replace with your actual logic.
return "Scores will be displayed here"
examples = [
"Despite moments of promise, this film ultimately falls short of its potential. The premise intrigues, offering a fresh take on a familiar genre, but the execution stumbles in crucial areas",
]
topk = 5
def get_features(text):
inputs = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True).to("cuda")
target_act = gather_residual_activations(model, layer, inputs)
sae_act = sae.encode(target_act)
sae_act_aggregated = ((sae_act[:,:,:] > 0).sum(1) > 0).cpu().numpy()
X = pd.DataFrame(sae_act_aggregated)
feature_contributions = X.iloc[0].astype(float).values * clf.coef_[0]
contrib_df = pd.DataFrame({
'feature': range(len(feature_contributions)),
'contribution': feature_contributions
})
contrib_df = contrib_df.loc[contrib_df['contribution'].abs() > 0]
# Sort by absolute contribution and get top N
contrib_df = contrib_df.reindex(contrib_df['contribution'].abs().sort_values(ascending=False).index)
contrib_df = contrib_df.head(topk)
descriptions = []
for feature in contrib_df["feature"]:
description = get_feature_descriptions(feature)
print(description)
descriptions.append(description)
contrib_df["description"] = descriptions
import plotly.graph_objs as go
fig = go.Figure(go.Bar(
x=contrib_df['contribution'],
y=contrib_df['description'],
orientation='h' # Horizontal bar chart
))
fig.update_layout(
title='Feature contribution',
xaxis_title='Contribution',
yaxis_title='Features',
height=500,
margin=dict(l=200) # Increase left margin to accommodate longer feature names
)
fig.update_yaxes(autorange="reversed")
probability = clf.predict_proba(X)[0]
classes = {
"Positive": probability[1],
"Negative": probability[0]
}
choices = [(description, feature) for description, feature in zip(contrib_df["description"], contrib_df["feature"])]
dropdown = gr.Dropdown(choices=choices,
value=choices[0][1],
interactive=True, label="Features")
return classes, fig, dropdown
def get_highlighted_text(text, feature):
inputs = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True).to("cuda")
target_act = gather_residual_activations(model, layer, inputs)
sae_act = sae.encode(target_act)
activated_tokens = sae_act[0:,:,feature]
max_activation = activated_tokens.max().item()
activated_tokens /= max_activation
activated_tokens = activated_tokens.cpu().detach().float().numpy()
output = []
for i, token_id in enumerate(inputs[0, :]):
token = tokenizer.decode(token_id)
output.append((token, activated_tokens[0, i]))
return output
def get_feature_iframe(feature):
layer_name = f"{layer}-gemmascope-res-{width}"
model_name_neuronpedia = model_name.split("/")[1]
url = f"https://neuronpedia.org/{model_name_neuronpedia}/{layer_name}/{feature}?embed=true"
html_content = embed_content(url)
html = gr.HTML(html_content)
return html
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=4):
input_text = gr.Textbox(label="Input", show_label=False, value=DEFAULT_EXAMPLE)
gr.Examples(
examples=examples,
inputs=input_text,
)
with gr.Column(scale=1):
run_button = gr.Button("Run")
with gr.Row():
label = gr.Label(label="Scores")
with gr.Row():
with gr.Column(scale=1):
plot = gr.Plot(label="Plot")
dropdown = gr.Dropdown(choices=["Option 1"], label="Features")
with gr.Column(scale=1):
highlighted_text = gr.HighlightedText(
label="Activating Tokens",
combine_adjacent=True,
show_legend=True,
color_map={"+": "red", "-": "green"})
with gr.Row():
html = gr.HTML()
# Connect the components
run_button.click(
fn=get_features,
inputs=[input_text],
outputs=[label, plot, dropdown],
).then(
fn=get_highlighted_text,
inputs=[input_text, dropdown],
outputs=[highlighted_text]
).then(
fn=get_feature_iframe,
inputs=[dropdown],
outputs=[html]
)
dropdown.change(
fn=get_highlighted_text,
inputs=[input_text, dropdown],
outputs=[highlighted_text]
).then(
fn=get_feature_iframe,
inputs=[dropdown],
outputs=[html]
)
demo.launch(share=True)